• Title/Summary/Keyword: Embankment Material

Search Result 134, Processing Time 0.061 seconds

EVALUATION OF NONLINEAR FINITE ELEMENT COMPUTER PROGRAM SMAP-S2 (비선형 유한요소 컴퓨터 프로그램 SMAP-S2의 평가)

  • 김광진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.271-288
    • /
    • 1991
  • SMAP-S2 is an advanced too-dimensional , static finite element computer program developed for the geometric and material nonlinear structure-medium interaction analysis. The program has specific applications for modeling geomechanical problems associated with multi-staged excavation or embankment. Theoretical formulations and computational algorithms are presented along with the description of elasto-plastic material models. Nonlinear features of the code are verified by comparing with known solutions or experimental test results. Capabilities of per- and post-processing programs are discussed.

  • PDF

Long-term Compressible Settlement of Coal Ash and Tire Shred as Fill Materials (석탄회 및 폐타이어 재료의 장기 압축 침하 거동 특성)

  • Lee, Sung-Jin;Shin, Min-Ho;Hwang, Seon-Keun;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.858-865
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we estimated the long-term compressible settlements for 6 materials such as TA(Tire-Bottom Ash mixture), TBA(Tire-Bottom Ash<5mm) mixture, TWS(Tire-Weathered Soil mixture), Bottom Ash, Bottom Ash(<5mm), Weathered soils.

  • PDF

Study on Young's Modulus of Geomaterials used in Korean Railway Infrastructures

  • Lee, Sung Jin;Lee, Seong Hyeok;Lee, Il Wha;Hwang, Su Beom;Kim, Ki Jae
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • In this study, cyclic triaxial tests were carried out with the coarse granular materials used in Korean railway infrastructure (reinforced trackbed, gravel of transition zone, upper subgrade of railway) and Young's modulus for the target materials in small strain level were suggested. And the result of elastic modulus suggested in this study is expected to be effectively applied to dynamic analysis of the railway embankment structure using similar material, since the grain size distributions and unit weight of the material tested in this study are specified in Korean Railway Design Criteria.

A Characteristic on Difference of Water Content with Temperature and Compaction of Gypsum to Utilize Fill Material (석고의 축조재료 활용을 위한 온도조건에 따른 함수비 변화와 다짐 특성)

  • Seo, Dong-Uk;Yu, Bong-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.47-54
    • /
    • 2012
  • As a large construction such as highway, dam, reclaimed land etc. increase in number more and more, large amount of fill materials are required. It is needed to utilize a gypsum which is a by-product yielded from chemical plants, as fill materials. Though some studies have been conducted to know a engineering characteristic of gypsum, it is not certain that water contents were checked at $45^{\circ}C$ dry oven. This study proposed that water contents must be measured at $45^{\circ}C$ dry condition because gypsum is changed to other types as a dry temperature. As the results obtained by compaction tests, it is found that moisture of gypsum in compaction must be within -5.0~2.5 % O.M.C (optimal moisture content).

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

Effect of Coarse Materials on Compaction of Soil (조립재가 흙의 다짐에 미치는 영향)

  • 윤충섭;김호일;김현태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.84-95
    • /
    • 1991
  • The compaction ratio of the field dry density to the maximum dry density is generally adopted as the index of quality control for embankment of earthfill structures such as Earth Dam, Sea Dike, River Bank and Road. In case of coarse materials are included in the earth material, the compaction ratio will be varied in wide range since the dry density is influenced by quantity of coarse material in the soil. The treatment for the coarse material should be controlled carefully in testing. In this study, the compaction characteristics of the soil contained the coarse materials were researched and calibration of the suitability of field quality control methods were carried out. 28 Samples were made of clay(CL) and sandy soil (SM) mixed with gravel whose content were 0, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, and 60% in Weight. The compaction characteristics depending on the coarse material content were analysed through 4 types of compaction tests which are A-1, B-i, C-i and D-1. The adjusting coefficients for density and moisture content namely a and ${\beta}$ respectively were proposed in order to consider the effects depending on content of the coarse materials. The test methods to control reasonably and promptly the quality of earthfill were proposed after analysing the ranges of possible errors on the relative compaction ratio between laboratory compaction methods and field density testing methods.

  • PDF

A study on development of artificial aggregates for embankment using reclaimed coal ash from thermoelectric power station (화력발전소 매립석탄회를 이용한 성토용 인공골재 개발 연구)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Jang, Nam-Ju;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1051-1060
    • /
    • 2008
  • The use of the coal ash for surcharge material, in a view of the environmental aspect, can decrease amount of the reclamation through recycling waste materials as well as prevent a destruction of the ecosystem attributed to sand picking. In addition, it can reduce both unit cost of material and construction expenses. In this study, new construction material as alternative surcharge material using coal ash, which is by-product from thermoelectric power plant, were developed. Mixing ratios of fly ash and bottom ash derived from the coal ash in Samchunpo thermoelectric power plants were determined. Furthermore, mixing conditions depending on the ratios of the cement and gypsum used for chemical additive were determined too. Uniaxial compression strength tests were conducted at different mixing conditions and Design graph of optimum mixing ratio at each required strength for economic efficiency is indicated in this paper.

  • PDF

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile에 의한 연약지반 개량 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.223-230
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

A Study on Engineering Characteristics of Load Reducing Material EPS (도로성토하중경감재 EPS의 공학적 특성에 관한 연구)

  • Jang, Myeong-Sun;Cheon, Byeong-Sik;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 1996
  • The EPS has the unit weight of only 20~30kg/m3 and is used as one of the methods of reducing road embankment loads. Parts of it's applications are for backfill materials of structures like abutment, retaining wall, etc., to reduce horizontal earth pressure and for banking materials to secure the safety of settlement and bearing capacity by minimizing the stress Increment. However, the Korean Standards (KS) has not yet proposed any testing method for use of EPS as a engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. Therefore, in Korea, EPS is used as banking material without any systematic testing data as a civil engineering material. In this point of view, this paper deals with the engineering characteristics of EPS through many laboratory tests on strength, strain, absorption, and creep. from the results achived through tests, this paper proposes the enactment of a suitable quality testing ordinance and the criteria of unconfined design strength of EPS for use as engineering material.

  • PDF