• Title/Summary/Keyword: Elongation and Hardness

Search Result 364, Processing Time 0.029 seconds

Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites (천연섬유/천연고무 복합재료의 특성에 미치는 Kenaf 섬유함량의 영향)

  • Cho, Yi-Seok;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • Natural fiber/natural rubber composites were fabricated by uniformly compounding natural rubber and cellulose- based natural fiber kenaf and then by compression molding. The effect of kenaf fiber content on their vulcanization behavior, hardness, tensile properties, tear strength and static and dynamic properties was investigated. The contents of kenaf fiber in the composites were 0, 5, 10, 15, and 20 phr, compared to natural rubber and additives. The result indicated that various properties of natural rubber depended on the kenaf fiber content. With increasing kenaf fiber content, the torque for vulcanization of natural rubber was increased whereas the vulcanization time was reduced as well. The hardness, tensile modulus and tear strength of kenaf/natural rubber composites were gradually decreased with the fiber content whereas the tensile strength and elongation at break were decreased. Also, with increasing the kenaf fiber content the dynamic property of natural rubber was changed more greatly than the static property. The loss factor, which is closely related with the damping or absorption of the energy given to natural rubber, was proportionally increased with the fiber content.

The effect of Cu and Sb on the microstructure and mechanical properties in Sn-Sb-Cu-Ni-Cd whitemetal (Sn-Sb-Cu-Ni-Cd whitemetal에서 Cu와 Sb가 미세조직과 기계적 특성에 미치는 영향)

  • Kim, Jin-Kon;Kang, Dae-Sung;Kwon, Young-Jun;Kim, Ki-Sung;Sang, Hie-Sun;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • The effects of Cu and Sb on the microstructure and mechanical properties of Sn-Sb-Cu-Ni-Cd whitemetal were investigated. Any compound phase was not observed in the whitemetal with 0.05 wt% Cu, while as the Cu content was increased, star- or needle-like $Cu_6Sn_5$ phases were found. The tensile strength gradually increased with Cu up to 5 % and then remained almost constant with Cu content above 5 %, while the hardness continuously increased with Cu content because of the increased hard $Cu_6Sn_5$ phases. As the Sb content increased, SbSn cuboids were present as well as $Cu_6Sn_5$. The tensile steength and hardness continuously increased and the elongation decreased with Sb content.

Effect of Microstructure Change According to Tempering Temperature on Room Temperature Tensile Properties in Carbon Steel of SM30C (SM30C의 탄소강에서 템퍼링 온도에 따른 미세조직 변화가 상온 인장특성에 미치는 영향)

  • Yebeen Ji;Kibeom Kim;Jung jong Min;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • In order to process plastic with similar mechanical performance to metal materials, it is necessary to improve the strength and hardness of core parts of the injection equipment in extrusion system. The tempering process is a heat treatment performed to reduce brittleness and improve elongation along with improvement of dimensional defects of martensite formed after quenching. In this study, changes in microstructure and mechanical properties according to temperature were evaluated after quenching and tempering of SM30C material. As a result, the strength and hardness were gradually decreased by tempering at 250~400℃, and the decrease was greatly increased under the tempering condition at 450℃. Under the tempering condition of 200~400℃, the main structure was lath martensite, and the precipitation amount and size of needle-shaped cementite increased along the lath with the increase of the tempering temperature. Most of the shape of cementite has a needle-like structure, and the formation of some spherical cementite is observed. Under the tempering condition of 450℃, a mixed structure of ferrite and martensite was formed according to the decomposition of martensite.

A Study on Fabrication Conditions of Al-SiCp Composites by Squeeze Casting (Squeeze Casting에 의한 Al-SiCp 복합재료의 제조 조건에 관한 연구)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.471-479
    • /
    • 1994
  • Al-2%Si-2%Mg alloy containing SiC particle in 20, $70{\mu}m$ were prepared by mean of squeeze casting with various pressure 50, 100, 150 and 220MPa respectively. The specimens were made by casting into $50{\Phi}{\times}100{\ell}$ mold under various squeeze conditions(pressures, pressurizing temperature, particle sizes). Mechanical properties(hardness, tensile strength, elongation and wear characteristics) were evaluated at room temperature with those various fabrication factors. It became feasible to make favorable Al-SiCp composite free from casting defects by the injection of Ar gas during melting and 100MPa pressure squeeze casting. However, pressure of 50MPa was not sufficient to avoid completely porosity formation as a result of precessing and shrinkage during solidification. As the particle size is smaller and the squeeze pressure is higher, the hardness and tensile strength at room temperature are higher. Cell size became smaller gradually with increase of squeeze pressure. With increase of squeeze pressure(MPa), wear behaviors of those composites were changed from adhesive into abrasive wear, and the tendency of above behavior became outstanding with increasing sliding speed. The chemical reaction(4Al+3SiC${\rightarrow}$$Al_4C_3+3Si$) is more accelerated at interface between SiCp and matrix with increase of squeeze pressure. Therefore $Al_4C_3$ intercompound and Si peak intensity is increased at interface.

  • PDF

Microstructure and Mechanical Properties of AA1050/Mg(AZ91)/AA1050 Complex Sheet Fabricated by Roll Bonding Process (접합압연공정에 의해 제조된 AA1050/Mg(AZ91)/AA1050 복합판재의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee;You, Hyo-Sang;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.154-159
    • /
    • 2016
  • A roll-bonding process was applied to fabricate an AA1050/AZ91/AA1050 laminate complex sheet. Two AA1050 and one AZ91 magnesium sheets of 2 mm thickness, 30 mm width and 200 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 2 mm in thickness by conventional rolling. The rolling was performed at 623K without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 15.9 m/min. The AA1050/AZ91/AA1050 laminate complex sheet fabricated by roll bonding was then annealed at 373~573K for 0.5h. The microstructure of the complex sheets was revealed by electron back scatter diffraction (EBSD) measurement; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the complex sheet was found to increase by 11 % and the tensile elongation decreased by 7%, compared to those values of the starting material. In addition, the hardness of the AZ91 Mg region was slightly higher than those of the AA1050 regions. Both AA1050 and AZ91 showed a typical deformation structure in which the grains were elongated in the rolling direction; however, the mis-orientation distribution of grain boundaries varied greatly between the two materials.

Surface Modification and Heat Treatment of Ti Rod by Electro Discharge (전기방전에 의한 Ti rod의 열처리 및 표면개질 특성에 관한 연구)

  • Byun, C.S.;Oh, N.H.;An, Y.B.;Cheon, Y.W.;Kim, Y.H.;Cho, Y.J.;Lee, C.M.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.168-172
    • /
    • 2006
  • Single pulse of 2.0 to 3.5 kJ from $150{\mu}F$ capacitor was applied to the cp Ti rod for its surface modification and heat treatment. Under the conditions of using 2.0 and 2.5 kJ of input energy, no phase transformation has been occurred. However, the hardness and tensile strength decreased and the elongation increased after a discharge due to a slight grain growth. By using more than 3.0 kJ of input energy, the electro discharge made a phase transformation and the hardness at the edge of the cross section increased significantly. The Ti rod before a discharge was lightly oxidized and was primarily in the form of $TiO_2$. However, the surface of the Ti rod has been instantaneously modified by a discharge into the main form of TiN from $TiO_2$. Therefore, the electro discharge can modify its surface chemistry in times as short as $200{\mu}sec$ by manipulating the input energy, capacitance, and discharging environment.

Synthesis and Properties of Photocurable Epoxy Modified Acrylates Using Half-Ester Acrylates (하프-에스터 아크릴레이트를 이용한 광경화형 에폭시 변성 아크렐레이트의 합성과 물성)

  • 김동국;임진규;김우근;허정림
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2004
  • Various half-ester acrylates were prepared from anhydrides and 2-hydroxyethyl acrylate. Photocurable epoxy modified acrylates were prepared from synthesized half-ester acrylate and neopentylglycol diglycidylether. Physical properties such as hardness, yellowing, tensile strength and elongation were tested and compared as the structure of oligomer in cured-film differs. It was found that viscosity of neopentylglycol diglycidylether-hexahydrophthalic anhydride (NP-HA) was highest. Hardness and tensile strength of photocrosslinked neopentylglycol diglycidylether-hexahydrophthalic anhydride were better than those of other photocrosslinted epoxy acrylates. And 5% weight loss temperature of photocrosslinked neopentylglycol diglycidylether-hexahydrophthalic anhydride was higher than those of other photocrosslinked epoxy acrylates. Value of yellow index of photocrosslinked neopentylglycol diglycidyl ether-succinic anhydride (NP-SA) was lower than the other products.

A Study on the Manufacture of Aluminum Tie-Rod End by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 타이로드 엔드 제조에 관한 연구)

  • Kim, Hyo-Ryang;Seo, Myung-Kyu;You, Min-Su;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.180-185
    • /
    • 2002
  • Aluminum casting/forging process is used to produce an aluminum tie-rod end for the steering system of automobiles. Firstly, casting experiments were carried out to get a good preform for forging the tie-rod end. In the casting experiment, the effects of additives, Ti+B, Zr, Sr, and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. And a finite element analysis was performed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum tie-rod end by using the above cast preform. In the casting experiments, when 0.2% Ti+B and 0.25% Zr were simultaneously added into molten Al-Si alloy, the highest values of tensile strength and elongation of the cast preform were obtained. When 0.04% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform. The highest hardness was obtained when 0.2% Mg was added. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The hardness of a cast/forged product using designed preform was superior to that of required specification.

Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques (주조, 3-D printing을 활용한 laser sintered 및 CAD/CAM milled 기법을 이용하여 제작된 코발트-크롬 합금의 물리적 성질 및 파절 단면 관찰 비교 연구)

  • Choi, Yun-Jung;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Ahn, Jin-Soo;Park, Dong-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Purpose: The purpose of present study is to compare mechanical properties and microstructural characteristics of fractured surface for cast, 3-D printing laser sintered and CAD/CAM milled cobalt-chromium (Co-Cr) alloy specimens and to investigate whether laser sintered technique is adequate for dental applications. Materials and methods: Thirty six flat disc shape Co-Cr alloy specimens were fabricated for surface hardness test and divided into three groups according to the manufacturing methods; 12 specimens for casting (n=12), 12 specimens for laser sintered technology (n=12) and 12 specimens for milled technology (n=12). Twelve dumbbell shape specimens for each group were also fabricated for a tensile test. Statistical comparisons of the mechanical properties for the alloys were performed by Kruskal-Wallis test followed by Mann-Whitney and Bonferroni test. The microstructural characteristics of fractured surfaces were examined using SEM. Results: There were significant differences in the mean Vickers hardness values between all groups and the cast specimen showed the highest (455.88 Hv) while the CAD/CAM milled specimen showed the lowest (243.40 Hv). Significant differences were found among the three groups for ultimate tensile strength, 0.2% yield stress, elongation, and elastic modulus. The highest ultimate tensile strength value (1442.94 MPa) was shown in the milled group and the highest 0.2% yield strength (1136.15 MPa) was shown in the laser sintered group. Conclusion: Different manufacturing methods influence the mechanical properties and microstructure of the fractured surfaces in Co-Cr alloys. The cast Co-Cr alloy specimens showed the highest Vickers hardness, and the CAD/CAM milled specimens revealed the highest tensile strength value. All alloys represent adequate mechanical properties satisfying the ISO standards of dental alloy.

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.