• 제목/요약/키워드: Elliptical structures

검색결과 102건 처리시간 0.021초

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

Optimization of a Defected Ground Structure to Improve Electromagnetic Bandgap Performance

  • Kwon, Manseok;Kim, Myunghoi;Kam, Dong Gun
    • Journal of electromagnetic engineering and science
    • /
    • 제14권4호
    • /
    • pp.346-348
    • /
    • 2014
  • A dispersion analysis is performed to estimate the stopband characteristics of electromagnetic bandgap (EBG) structures with defected ground structures (DGS) of various shapes. Design guidelines are suggested for both elliptical and rectangular DGS patterns that result in a maximum stopband bandwidth for a given perforation area. This method provides a basis for numerical optimization techniques that can be used in synthesizing DGS shapes to meet bandgap requirements and layout constraints.

Tracing the evolution of massive galaxies; Alignment of elliptical galaxies in the Virgo cluster

  • Kim, Suk;Jeong, Hyunjin;Lee, Jaehyun;Lee, Youngdae;Joo, Seok-joo;kim, Hak-Sub;Rey, Soo-Chang
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.47.1-47.1
    • /
    • 2017
  • We study the alignment of kinematic position angles (PAkin) of early-type galaxies in the Virgo cluster using Atlas3D data. The PAkin represent the direction of the angular momentum of the galaxies better than the photometric position angles. Therefore, the alignment of their PA$_{kin}$ is a useful tool to trace the momentum direction. The early-type galaxies in the Virgo cluster have been known to be distributed as filamentary structures inside the cluster. We found that their PAkin are aligned to two directions of 20degree and -80degree. This fact is confirmed using the bootstrap test, and that is, the two alignment angles are statistically significant. Besides, these two angles are surprisingly aligned parallel to the filamentary structures inside the cluster. These results suggest that early-type galaxies were formed by major merging in the filament structures and then fall into the Virgo cluster while maintaining their position angles.

  • PDF

Value at Risk of portfolios using copulas

  • Byun, Kiwoong;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • 제28권1호
    • /
    • pp.59-79
    • /
    • 2021
  • Value at Risk (VaR) is one of the most common risk management tools in finance. Since a portfolio of several assets, rather than one asset portfolio, is advantageous in the risk diversification for investment, VaR for a portfolio of two or more assets is often used. In such cases, multivariate distributions of asset returns are considered to calculate VaR of the corresponding portfolio. Copulas are one way of generating a multivariate distribution by identifying the dependence structure of asset returns while allowing many different marginal distributions. However, they are used mainly for bivariate distributions and are not widely used in modeling joint distributions for many variables in finance. In this study, we would like to examine the performance of various copulas for high dimensional data and several different dependence structures. This paper compares copulas such as elliptical, vine, and hierarchical copulas in computing the VaR of portfolios to find appropriate copula functions in various dependence structures among asset return distributions. In the simulation studies under various dependence structures and real data analysis, the hierarchical Clayton copula shows the best performance in the VaR calculation using four assets. For marginal distributions of single asset returns, normal inverse Gaussian distribution was used to model asset return distributions, which are generally high-peaked and heavy-tailed.

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries

  • Chung, Yeon-Wook;Lee, Byung-Ill;Cho, Byoung-Ki
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.113-119
    • /
    • 2008
  • A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.

Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures

  • B, Chandra Mouli;K, Ramji;Kar, Vishesh R;Panda, Subrata K;K, Lalepalli Anil;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.527-536
    • /
    • 2018
  • The free vibration frequency responses of the graded flat and curved (cylindrical, spherical, hyperbolic and elliptical) panel structures investigated in this research considering the rectangular and tilted planforms under unlike temperature loading. For the numerical implementation purpose, a micromechanical model is prepared with the help of Voigt's methodology via the power-law type of material model. Additionally, to incur the exact material strength, the temperature-dependent properties of each constituent of the graded structure included due to unlike thermal environment. The deformation kinematics of the rectangular/tilted graded shallow curved panel structural is modeled via higher-order type of polynomial functions. The final form of the eigenvalue equation of the heated structure obtained via Hamilton's principle and simultaneously solved numerically using finite element steps. To show the solution accuracy, a series of comparison the results are compared with the published data. Some new results are exemplified to exhibit the significance of power-law index, shallowness ratio, aspect ratio and thickness ratio on the combined thermal eigen characteristics of the regular and tilted graded panel structure.

Buckling failure of cylindrical ring structures subjected to coupled hydrostatic and hydrodynamic pressures

  • Ping, Liu;Feng, Yang Xin;Ngamkhanong, Chayut
    • Structural Monitoring and Maintenance
    • /
    • 제8권4호
    • /
    • pp.345-360
    • /
    • 2021
  • This paper presents an analytical approach to calculate the buckling load of the cylindrical ring structures subjected to both hydrostatic and hydrodynamic pressures. Based on the conservative law of energy and Timoshenko beam theory, a theoretical formula, which can be used to evaluate the critical pressure of buckling, is first derived for the simplified cylindrical ring structures. It is assumed that the hydrodynamic pressure can be treated as an equivalent hydrostatic pressure as a cosine function along the perimeter while the thickness ratio is limited to 0.2. Note that this paper limits the deformed shape of the cylindrical ring structures to an elliptical shape. The proposed analytical solutions are then compared with the numerical simulations. The critical pressure is evaluated in this study considering two possible failure modes: ultimate failure and buckling failure. The results show that the proposed analytical solutions can correctly predict the critical pressure for both failure modes. However, it is not recommended to be used when the hydrostatic pressure is low or medium (less than 80% of the critical pressure) as the analytical solutions underestimate the critical pressure especially when the ultimate failure mode occurs. This implies that the proposed solutions can still be used properly when the subsea vehicles are located in the deep parts of the ocean where the hydrostatic pressure is high. The finding will further help improve the geometric design of subsea vehicles against both hydrostatic and hydrodynamic pressures to enhance its strength and stability when it moves underwater. It will also help to control the speed of the subsea vehicles especially they move close to the sea bottom to prevent a catastrophic failure.

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.