• Title/Summary/Keyword: Elliptical Motion

Search Result 82, Processing Time 0.031 seconds

Micro V-groove Machining Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초음파 미세 홈 가공)

  • Kim G.D.;Hwang K.S.;Loh B.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.625-628
    • /
    • 2005
  • For precise micro-grooving and surface machining, ultrasonic cyclic elliptical cutting is proposed using two parallel piezoelectric actuators. The piezoelectric actuators are energized by sinusoidal voltages of varying phase which is essenstial to generating elliptical cutting. Experimental setup is composed of ultrasonic motor, single crystal diamond cutting tool, and precise motorized xyz stage. It is confirmed experimentally that the cutting performance, in terms of the cutting force, the burr formation, and the discontinuous chip formation is improved remarkably by applying ultrasonic elliptical vibration cutting.

  • PDF

CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism (CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇)

  • Cha, Eun-Yeop;Jung, Sun-Pil;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

Analysis of Linear-type Ultrasonic Motor Using A Finite Element Method (유한요소해석 프로그램에 의한 리니어 초음파 모터의 변위량 해석)

  • 이동준;임태빈;강성택;김영욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • This paper is a study on a linear ultrasonic motor with a first longitudinal$(L_1)$ and fourth bending $(B_4)$ double-mode rectangular plate. The stator vibrator is composed of an elastic material plate and of a piezo-ceramic element having a motion by electrical excitation. Each strain vector differs by $90^{\circ}$ generate travelling wave with the elliptical displacement motion of a point on the surface. To magnify displacement of longitudinal direction in elliptical displacement motion, the motor has a mechanism of the.displacement enlargement. In this paper, the vibration shape of the stator is simulated using the finite element method. A detailed model considered of the piezoelectric effect and of the exact geometry of the stator is used to calculate the displacement. The position of displacement mechanism is decided by the maximum displacement.

  • PDF

Biomechanics of Elliptical Trainer As an both Heat and Work - Related Experiment of a Fundamental Engineering Education : Energy Expenditure and Metabolic Cost (열과 일이 연관된 공학기초교육 실험으로써 Elliptical Trainers(ET) 생체역학 - 역학적 에너지 소비량 및 대사 소비량)

  • Hwang, Un-Hak
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.146-153
    • /
    • 2010
  • The physics theory applied to the elliptical health trainers can be a good example in engineering education. From the point of view of the physics education the measurement of mechanical and thermal energy expenditure in elliptical trainers can be related to the muscle activity, quantity of motion, and metabolic cost. We realized that the low speed training is effective for high basal metabolism due to increasing the muscle activity even if the high speed training is effective for training down. Elliptical Trainer may provide an effective oxygen exhaustion and thus effective training down. However, the metabolic cost does not have much relation to the amount of training under the high speed of trainer.

  • PDF

An Analysis of Elastohydrodynamic Lubrication of Elliptical Contacts : Part II (타원접촉의 탄성유체윤활해석 : 제2보)

  • 박태조;현준수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.182-188
    • /
    • 1999
  • A theoretical study of elastohydrodynamic lubrication of elliptical contacts with both rolling and spin has been carried out. A finite difference method and the Newton-Raphson method are applied to solve the problem. The velocity vectors resulting from combined spin and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. At high spin-roll ratios the minimum film thickness is considerably reduced, whereas the central film thickness decreases less dramatically, The present numerical scheme can be used in the analysis of general elliptical contact problems.

  • PDF

Optimal Design of Thin Type Ultrasonic Motor (박형 초음파모터의 최적 설계)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.335-340
    • /
    • 2008
  • In this study, novel structured thin ultrasonic rotary motor has been proposed. Ultrasonic motors are based on an elliptical motion on the surface of elastic body. Thin brass plate was used as a cross shaped vibrator and eight ceramic plates were attached on upper side and bottom side of the brass plate. From the thin stator, elliptical displacements of the four contact tips were obtained. To find the optimal size of the stator, motions of the motors were simulated using ATILA by changing length, width and thickness of the ceramics. The stators had commonly three resonance peaks and contact tips of the stator moved on tangential or normal trajectories at these resonance peaks. The maximum displacements at the resonance peaks were compared. As results, maximum displacements of the contact tips were obtained at the length of 16 mm, width of 6 mm and thickness of 0.4 mm. Changes of the resonance frequencies were inversely proportional to the length of ceramic and proportional to the width of ceramic. The motor was fabricated by using the designed stator. And, the characteristics of the motor were compared with the simulated results. When the motor was fabricated with these results, speed fo 935 rpm was obtained by input voltage of 25 Vrms at 93.5 kHz.

Displacement Characteristics of the Square-frame Ultrasonic Motor (정사각틀 초음파 모터의 변위 특성)

  • Kim, Jong-Wook;Park, Choong-Hyo;Lim, Jung-Hoon;Jeong, Seong-Su;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.733-738
    • /
    • 2011
  • A novel design of a simple square-frame USM (ultrasonic motor) was proposed. The stator of the motor consists of a square-frame shape elastic body and four rectangular plate ceramics. The four ceramics were attached to inner surfaces of the square frame elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90 degree phase difference voltage were applied to the ceramics on vertical surfaces. To find a model that generates elliptical motion at outside of the stator, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As result, the model EL10EH3ET0.5CL4 which generates the maximum elliptical displacement was chosen by analyzing the resonance mode according to changes in frequency.

Study on Design and Driving Characteristics of T-Shaped Piezoelectric Actuators (T형상 압전 엑추에이터의 설계 및 구동특성 연구)

  • Kim, Tae-Hoon;Park, Min-Ho;Jeong, Seong-Su;Jun, Ho-Ik;Cheon, Seong-Kyu;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.30-34
    • /
    • 2019
  • A newly proposed T-shape piezoelectric actuator, composed of piezoelectric benders, was designed and studied. This actuator has four legs, and can walk in both forward and backward directions. The piezoelectric actuator has a simple structure and can be easily fabricated. It consists of a piezoelectric bender and a joint. The piezoelectric bender is composed of carbon and ceramic materials. Therefore, there is an advantage in that it can be fabricated on a very small scale. Elliptical displacements of the piezoelectric actuators were analyzed by finite element analysis. Elliptical motion at the tip occurred at two voltages having a 90-degree phase difference. Based on the finite element analysis results, prototype actuators with maximum displacements were fabricated, and the characteristics of their movements were characterized.

Mirror Finishing of Co-Cr-Mo Alloy by Ultrasonic Elliptical Vibration Cutting Method (초음파타원진동절삭가공법에 의한 Co-Cr-Mo 합금의 경면가공)

  • Song, Young-Chan;Tanaka, Kenichi;Moriwaki, Toshinmichi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.56-62
    • /
    • 2008
  • The biocompatibility and the fatigue strength of Co-Cr-Mo alloy are excellent, so it is used well for the material of artificial joints. The head of artificial joint needs mirror surface for reduction of abrasive resistance. Mirror finishing of Co-Cr-Mo alloy with geometrically defined single crystal diamond cutting tools is handicapped by micro chipping of tool edge. In general, it is said that the micro chipping of diamond tool is caused by work hardening of Co-Cr-Mo alloy for the cut. In the present research, mirror finishing of Co-Cr-Mo alloy by applying ultrasonic elliptical vibration cutting was carried out. The experimental results show that the micro chipping of diamond tool was suppressed and the tool wear was remarkably reduced as compared with the ordinary diamond cutting without elliptical vibration motion. It was confirmed that the good mirror surface of maximum surface roughness of 25 nmP-V was obtained for the cutting length of about 14 m. It is expected that mirror finishing of Co-Cr-Mo alloy can be achieved by applying ultrasonic elliptical vibration cutting practically.