• 제목/요약/키워드: Ellipsoid fitting

검색결과 10건 처리시간 0.029초

롤피치 제한 조건에 강인한 가중 최소자승법 기반 마그네토미터 캘리브레이션 기법 (Weighted Least Square-Based Magnetometer Calibration Method Robust in Roll-Pitch Limited Conditions)

  • 전태형;이정근
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.259-265
    • /
    • 2017
  • Magnetometer calibration must be performed before the use of three-axis magnetometers to ensure the accuracy of orientation estimation. Recently, one of the most popular calibration approaches is the ellipsoid fitting technique due to its high performance in calibration. To date, in fact, performances of the existing ellipsoid fitting methods have been evaluated with full range rotation data. However, in case of the calibration of magnetometers attached to vehicles, ships, and planes, it is very difficult to collect the full range rotation data since their allowable ranges in terms of roll and pitch are limited to small. This constraint may result in serious performance degradation of some ellipsoid fitting algorithms. Therefore, to be practical, this paper proposes a weighted least square-based magnetometer calibration method that is robust in roll-pitch limited conditions. Furthermore, the proposed method is a linear approach and thus is free from the well-known initial value issue in nonlinear approaches. Experimental results show the superiority of the proposed method to other ellipsoid-fitting calibration methods.

Human Gender and Motion Analysis with Ellipsoid and Logistic Regression Method

  • Ansari, Md Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제3권2호
    • /
    • pp.9-12
    • /
    • 2016
  • This paper is concerned with the effective and efficient identification of the gender and motion of humans. Tracking this nonverbal behavior is useful for providing clues about the interaction of different types of people and their exact motion. This system can also be useful for security in different places or for monitoring patients in hospital and many more applications. Here we describe a novel method of determining identity using machine learning with Microsoft Kinect. This method minimizes the fitting or overlapping error between an ellipsoid based skeleton.

벳셀타원체 기준의 남한지역 지오이드 모델(KGM95) (Geoid Models Referred to the Bessel Ellipsoid of South Korea)

  • 이영진
    • 한국측량학회지
    • /
    • 제13권2호
    • /
    • pp.125-133
    • /
    • 1995
  • 지오이드고는 천문측지자료, 중력자료, 위성자료 등으로부터 계산될 수 있다. 이 논문에서는 연직선편차와 지오이드고 제약조건을 사용하여 곡면다항식법에 따라 동경원점계인 벳셀지오이드 모델(KGM95-A)을 산정하고 지심계인 중력지오이드 모델 KGM 93-C로 부터 동경원점 변환요소에 의해 변환된 벳셀지오이드(KGM95-D)와 비교하였으며 우리나라 측지망에서의 적용에 대한 토의가 제시되었다.

  • PDF

Development of Simple Articulated Human Models using Superquadrics for Dynamic Analysis

  • Lee, Hyun-Min;Kim, Jay-Jung;Chae, Je-Wook
    • 대한인간공학회지
    • /
    • 제30권6호
    • /
    • pp.715-725
    • /
    • 2011
  • Objective: This study is aimed at developing Articulated Human Models(AHM) using superquadrics to improve the geometric accuracy of the body shape. Background: The previous work presents the AHM with geometrical simplification such as ellipsoids to improve analysis efficiency. However, because of the simplicity, their physical properties such as a center of mass and moment of inertia are computed with errors compared to their actual values. Method: This paper introduces a three steps method to present the AHM with superquadrics. First, a 3D whole body scan data are divided into 17 body segments according to body joints. Second, superquadric fitting is employed to minimize the Euclidean distance between body segments and superquadrics. Finally, Fee-Form Deformation is used to improve accuracy over superquadric fitting. Results: Our computational experiment shows that the superquadric models give better accuracy of dynamic analysis than that of ellipsoid ones. Conclusion: We generate the AHM composed of 17 superquadrics and 16 joints using superquadric fitting. Application: The AHM using superquadrics can be used as the base model for dynamics and ergonomics applications with better accuracy because it presents the human motion effectively.

3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원 (Human Limbs Modeling from 3D Scan Data)

  • 현대은;윤승현;김명수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제8권4호
    • /
    • pp.1-7
    • /
    • 2002
  • 본 논문에서는 3차원 인체 형상 스캔 데이터로부터 팔, 다리형상을 복원하는 방법을 제시한다. 이 방법에서는 팔, 다리 스캔 데이터의 대략적인 형상을 나타내는 기반 곡면과 자세한 세부 현상을 나타내는 displacement 맵의 이중구조로 형상을 복원한다. 팔, 다리 부분의 스캔 데이터 형상은 골격을 따라 스윕하는 타원체로 근사되며, 이 타원체 스윕을 부드럽게 감싸는 envelope 곡면으로 기반 곡면을 생성한다. 타원체 스윕의 envelope 곡면은 빠른 계산을 위해 골격을 따라 추출되는 타원의 스윕 곡면으로 근사된다. 기반 곡면에 대한 스캔 데이터 점들의 displacement는 각 단면 타원으로의 매핑을 통해 스칼라 값으로 구해지며, 다단계 스플라인 함수를 이용하여 매개화된 displacement 맵을 구성한다. 이 과정에서 복원된 형상 위의 점들은 해당하는 타원체 상으로 매핑된다. 본 방법을 통하여 팔, 다리의 간결한 형상 표현을 추출할 수 있으며, 매핑된 타원체를 이용하여 형상을 빠르고 사실적으로 변형할 수 있다.

  • PDF

Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites

  • Alexander, Bobyl;Sang-Сheol, Nam;Jung-Hoon, Song;Alexander, Ivanishchev;Arseni, Ushakov
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.438-452
    • /
    • 2022
  • For cuboid and ellipsoid crystallites of LiFePO4 powders, by X-ray diffraction (XRD) and microscopic (TEM) studies, it is possible to determine the anisotropic parameters of the crystallite size distribution functions. These parameters were used to describe the cathode rate capability within the model of averaging the diffusion coefficient D over the length of the crystallite columns along the [010] direction. A LiFePO4 powder was chosen for testing the developed model, consisting of big cuboid and small ellipsoid crystallites (close to them). When analyzing the parts of big and small rate capabilities, the fitting values D = 2.1 and 0.3 nm2/s were obtained for cuboids and ellipsoids, respectively. When analyzing the results of cyclic voltammetry using the Randles-Sevcik equation and the total area of projections of electrode crystallites on their (010) plane, slightly different values were obtained, D = 0.9 ± 0.15 and 0.5 ± 0.15 nm2/s, respectively. We believe that these inconsistencies can be considered quite acceptable, since both methods of determining D have obvious sources of error. However, the developed method has a clearly lower systematic error due to the ability to actually take into account the shape and statistics of crystallites, and it is also useful for improving the accuracy of the Randles-Sevcik equation. It has also been demonstrated that the shape engineering of crystallites, among other tasks, can increase the cathode capacity by 15% by increasing their size correlation coefficients.

보간방법에 의한 WGS84 지오이드고 결정에 관한 연구 (A Study on the Determination of WGS84 Geoidal Height by the Interpolation Methods)

  • 강준묵;김홍진
    • 한국측량학회지
    • /
    • 제13권2호
    • /
    • pp.237-244
    • /
    • 1995
  • 본 연구에서는 수준점에 대한 GPS 관측결과로부터 WGS84 지오이드고 모델을 구성하고 Bi-linear방법, 회귀다항식 방법 및 삼각보간법을 사용하여 check points로 선정한 수준점에 대한 지오이드고를 산출하므로써 보간방법에 따른 보간정확도를 비교, 분석하였다. 또한 삼각점의 GPS 관측성과로부터 도출한 좌표변환계수를 적용하여 수준점의 Bessel 경 위도좌표를 구하고 수준점의 표고성과와 조합하여 수준점의 표고변환의 정확도를 검토하였다. 그 결과, 수준점의 WGS84지오이드고 및 정표고를 평균 20 cm의 편차로 결정할 수 있었다.

  • PDF

적혈구 변형성의 측정과 혈액 점도와의 상관관계 연구 (Measurements of RBC deformability and its effect on blood viscosity)

  • 구윤희;박명수;신세현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1682-1686
    • /
    • 2004
  • A slit-flow apparatus with laser diffraction method has been developed with significant advances in ektacytometry design, operation and data analysis. In the slit-flow ektacytometry (or laser-diffractometry), the deformation of red blood cells subjected to continuously decreasing shear stress in slit flow is measured. A laser beam traverses a diluted blood suspension flowing through a slit and is diffracted by RBCs in the volume. The diffraction patterns are captured by a CCD-video camera, linked to a frame grabber integrated with a computer, while the differential pressure variation is measured by a pressure transducer. Both measurements of laser-diffraction image and pressure with respect to time enable to determine deformation index and the shear stress. The range of shear stress of 0 ${\sim}$ 35 Pa and measuring time is less than 2 min. When deforming under decreasing shear stress, RBCs change gradually from the prolate ellipsoid towards a circular biconcave morphology. The Deformation Index (DI) as a measure of RBC deformability is determined from an isointensity curve in the diffraction pattern using an ellipse-fitting program. The advantages of this design are simplicity, i.e., ease of operation and no moving parts, low cost, short operating time, and the disposable kit which is contacted with blood sample.

  • PDF

CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증 (Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE)

  • 이덕영;최보성;최원호;안장호
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.