• Title/Summary/Keyword: Ellipsoid Height

Search Result 24, Processing Time 0.031 seconds

A study on the reduction of the distance on reference ellipsoid to the distance on geoid (타원체상 거리의 지오이드면상 거리로의 보정에 관한 연구)

  • 김형태;김용일;어양담;김창재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.137-143
    • /
    • 1999
  • The straight spatial distance or geodesic distance on WGS84 ellipsoid measured by GPS should be reduced on geoid to be used in Korean Geodetic System. The factors for this reduction are geoidal height and mean radius of the earth. On this study the effects of these factors on reducing distance were analyzed and the result showed that mean geoidal height should be multiplied by $1.6\times{10}^{-7}$ per unit distance for reducing geodesic distance on reference ellipsoid to that on geoid. Condsidering that the geoidal height on Bessel ellipsoid in Korea is -45 m in northeast and -75 m in middle west. It also showed that the difference of geodesic distance between on reference ellipsoid and on geoid is about 7-12 mm per km.

  • PDF

Calculation of Geoidal Height refered to Bessel Ellipsoid From EGM96 Model (EGM96 모델을 이용한 Bessel 지오이드고의 계산)

  • 최경재;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to calculate geoidal height refered to Bessel ellipsoid, methods to translate geoidal heights from a certain coordinate system to an arbitrary system with the corresponding ellipsoid are studied. and geoidal heights refered to Bessel ellipsoid were computed from EGM96 Model refered to GRS80 using iteration method pro-posed in this paper. Transformation parameters between WGS84 and Bessel were calculated using geoidal heights computed from iteration method. The result of coordinate transformation(standard deviation) were 0.009 second in latitude and 0.006 in longitude and 0.393m in orthometric height.

  • PDF

A study on the Bessel geoidal height to improve the accuracy of coordinate transformation (좌표변환의 정확도 향상을 위한 Bessel 지오이드고에 관한 연구)

  • Shin, Bong-Ho;Kang, Joon-Mook;Kim, Hong-Jin;Choi, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.143-151
    • /
    • 1994
  • 3-D coordinates that result form GPS survey are not applied directly in korea because they are based on WGS 84 ellipsoid. Thus they must be transformed into longitude, latitude on the Bessel ellipsoid and orthometric height. Transformation parameters must be determined in order to perform the coordinate transformation. Also, coordinate transformation be preformed on longitude, latitude and ellipsoidal height. First estimation of Bessel geoidal height must be accomplished to acquire Bessel ellipsoidal height This paper suggests accuracy of coordinate transformation according to the estimation method of Bessel geoidal height. Also, This paper suggests that Bessel geoidal height have influence on the coordinates transformation.

  • PDF

Geoid Height Estimation Using Rail-road Reference Points (철도기준점을 활용한 지오이드고의 추정)

  • Heo, Joon;Song, Yeong-Sun;Kim, Sung-hoon;Moon, Cheung-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.499-505
    • /
    • 2009
  • This paper evaluated applicability of railroad reference points for determinating geoid heights. For this research, reference points on the Honam express raildroad which contain ellipsoid heights estimated by GPS/Leveling and orthometric heights by leveling were used. Geoid heights were calculated uisng orthometric and ellipsoid heights of 360 railroad reference points, and the RMSE's with respect to different intervals of reference points were analysed which were induced by interpolation methods. The results showed that no significant difference of RMSE's among interpolation. methods. RMSE's of 0-4km interval of reference points were determined within 2cm and 5-8km were within 3cm. Also, this research confirmed that GPS leveling with Geoid model is not auurate enough to be used for railroad surveying as yet.

Geoid Models Referred to the Bessel Ellipsoid of South Korea (벳셀타원체 기준의 남한지역 지오이드 모델(KGM95))

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The geoidal heights of a country may be computed from astrogedetic, gravimetric or satellite data. In this paper, the geoid models to the Bessel ellipsoid(KGM95-A) have been determined by the astrogedetic method, which is surface fitting techniques using deflections of the vertical and geoid height constraints. Transformation equations and the gravimetric geocentric geoid(KGM93-C) were applied to obtain the geoid height referred to the Tokyo Datum of the Korean geodetic network, the comparison of the astrogedetic results and discussions of the geoid information were added.

  • PDF

The effects of the geoidal height determination in geodetic origin on coordinates transformation between ellipsoids (Geoid 기준설정이 타원체간 좌표변환에 미치는 영향)

  • 강준묵;박운용;이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 1994
  • In this paper, the characteristics of coordinate transformation between the WGS84 and the Bessel ellipsoids according to the assumed values of the geoidal height on Bessel ellipsoid at the geodetic datum origin of Korea were investigated. For this, based on GPS data of 11 control points in Chungnam and Chungbuk province, the mean shift values between ellipsoids were calculated in each case. The geoidal heights on the Bessel ellipsoid were modelled in the area and the coordinate transformation coefficients were derived, and then the accuracy of the transformed coordinates according to fluctuations in geoidal heights were studied.

  • PDF

The Effect of Surface Meteorological Measurements on High-precision GPS Positing Determination

  • Wang, Chuan-Sheng;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.625-627
    • /
    • 2003
  • In this study, the Global Positioning System (GPS) data collected by the GPS receivers that were established as continuously operating reference stations by Central Weather Bureau and Industrial Technology Research Institute of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the baseline length on the proposed impact study, four baselines are considered according to the locations of the permanent GPS sites. The length of the shorter baseline is about 66km, while the longer is about 118 km. The results from the studies associated with different baseline lengths and ellipsoid height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on 66 days measurements is that the surface meteorological measurements have a significant impact on the positioning determination for the longer baseline case. The associated daily maximum differences are 1.1 cm and 1.4 cm for the baseline and ellipsoid height respectively. The corresponding biases are -8.1 mm in length and -7.3 mm in el lipsoid height.

  • PDF

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.

Application of the Indirect Effect on Regional Gravith Fielcs in the North Atlantic Ocean (北大西洋 重力場에 적용한 Indirect Effect)

  • 정우열;필립로
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 1987
  • Gravity measurements at sea are considered to be made on the geoid. The free-air anomalies are then determined by subtracting the theoretical gravity values predicted on a reference ellipsoid from the observed values. The gravity effect due to the height difference between the geoid and reference ellipsoid and the mass between them is known as the 'indirect effect'. The result of applying the indirect effect to surface ship derived gravity anomalies in the North Atlantic Ocean demonstrates the importance of its inclusion for regional stuedies involving mantle processes.

  • PDF

A TEST ON THE GENERATION OF ADDIDTIONAL PRODUCT FROM THE KOMPSAT-2 TERMINAL FOR POLAR SYSTEM

  • Seo, Min-Ho;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.212-215
    • /
    • 2008
  • The final product generated from the KOMPSAT-2 Terminal for Polar System, K2PS, is an ellipsoid projected image. This leaves a relief displacement on the image by process of which the height value of subject area is constant. In this paper, orthorectification using the SRTM was used to remove such artifacts, and thereafter, the additional product that could be generated from the K2PS was discussed.

  • PDF