• Title/Summary/Keyword: Elevated temperatures

Search Result 707, Processing Time 0.034 seconds

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire exposures

  • Mirza, Olivia;Shil, Sukanta Kumer;Rashed, M.G.;Wilkins, Kathryn
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.529-542
    • /
    • 2021
  • Shear connectors are required to build composite (concrete and steel) beams. They are placed at the interface of concrete and steel to transfer shear and normal forces between two structural components. Such composite beams are sensitive to provide structural integrity when exposed to fire as they loss strength, stiffness, and ductility at elevated temperature. The present study is designed to investigate the shear resistance and the failure modes of the headed stud shear connectors at fire exposure and post-fire exposure. The study includes ordinary concrete and concrete with carbon nanotubes (CNTs) to build composite (concrete-steel) beams with structural steel. Experimental push tests were conducted on composite beams at ambient and elevated temperatures, such as 200, 400 & 600℃. Moreover, push tests were performed on the composite beams after being exposed to 200, 400 & 600℃. Push test results illustrated the reduction of ultimate shear capacity and stiffness of headed stud shear connectors as the temperature increased. Although similar values of ultimate shear were obtained for the headed stud connectors in both ordinary and CNT concrete, the CNT modified concrete reduced the concrete spalling and cracking compared to ordinary concrete and was observed to be effective at temperatures greater than 400℃. All specimens showed a lower shear resistance at fire exposures compared to the corresponding post-fire exposures. Moreover, numerical simulation by Finite Element (FE) analyses were carried out at ambient temperature and at fire conditions. The FE analysis results show a good agreement with the experimental results. In the experimental studies, failure of all specimens occurred due to shear failure of headed stud, which was later validated by FE analyses using ABAQUS.

A Surface Etching for Synthetic Diamonds with Nano-Thick Ni Films and Low Temperature Annealing

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.279-283
    • /
    • 2015
  • Ni (100 nm thick) was deposited onto synthesized diamonds to fabricate etched diamonds. Next, those diamonds were annealed at varying temperatures ($400{\sim}1200^{\circ}C$) for 30 minutes and then immersed in 30 wt% $HNO_3$ to remove the Ni layers. The etched properties of the diamonds were examined with FE-SEM, micro-Raman, and VSM. The FE-SEM results showed that the Ni agglomerated at a low annealing temperature (${\sim}400^{\circ}C$), and self-aligned hemisphere dots formed at an annealing temperature of $800^{\circ}C$. Those dots became smaller with a bimodal distribution as the annealing temperature increased. After stripping the Ni layers, etch pits and trigons formed with annealing temperatures above $400^{\circ}C$ on the surface of the diamonds. However, surface graphite layers existed above $1000^{\circ}C$. The B-H loop results showed that the coercivity of the samples increased to 320 Oe (from 37 Oe) when the annealing temperature increased to $600^{\circ}C$ and then, decreased to 150 Oe with elevated annealing temperatures. This result indicates that the coercivity was affected by magnetic domain pinning at temperatures below $600^{\circ}C$ and single domain behavior at elevated temperatures above $800^{\circ}C$ consistent with the microstructure results. Thus, the results of this study show that the surface of diamonds can be etched.

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong;Bo Yang;Cuiqiang Shi;Xinjie Huang;George Vasdravellis;Quang-Viet Vu;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.281-298
    • /
    • 2024
  • Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

Silicon Thin-Film Transistors on Flexible Polymer Foil Substrates

  • Cheng, I-Chun;Chen, Jian Z.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1455-1458
    • /
    • 2008
  • Amorphous silicon (a-Si:H) thin-film transistors (TFTs) are fabricated on flexible organic polymer foil substrates. As-fabricated performance, electrical bias-stability at elevated temperatures, electrical response under mechanical flexing, and prolonged mechanical stability of the TFTs are studied. TFTs made on plastic at ultra low process temperatures of $150^{\circ}C$ show initial electrical performance like TFTs made on glass but large gate-bias stress instability. An abnormal saturation of the instability against operation temperature is observed.

  • PDF

Mechanical Properties of 0.25-0.65wt% CaO added AM60B Eco-Mg Diecastings at room and Elevated Temperatures (0.25-0.65wt% CaO 첨가 AM60B Eco-Mg 다이캐스팅 부품의 상온 및 고온 기계적 특성)

  • Seo, Jung-Ho;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • The effect of CaO addition to AM60B Mg alloy on tensile properties has been investigated, with focus on strength and ductility at room and elevated temperatures. The 0.25-0.65wt% CaO added AM60B Eco-Mg diecastings were prepared by high pressure die casting using Buhler 1,450-ton cold chamber machine without $SF_6$ and $SO_2$ gases. The microstructures and tensile properties of each alloy were tested. The results show that the grains of AM60B are refined and the mechanical properties increase with CaO addition at room temperature. The improvement of strength and ductility is prominent at 0.45-0.55wt% CaO addition. Also, improved mechanical properties are maintained at elevated temperature of $150^{\circ}C$. CaO addition results in $Al_2Ca$ phase formation mostly on the grain boundaries. This phase leads to the refinement of grain structures and improvement of ductility as well as strength. The suppression of ${\beta}-Mg_{17}Al_{12}$ phase as well as the decrease of fracture surface porosity and other casting defects caused by melt cleanliness also contribute to the enhancement of mechanical properties of AM60B Eco-Mg at room and elevated temperature.

Performance of concrete modified with SCBA and GGBFS subjected to elevated temperature

  • Palaskar, Satish Muralidhar;Vesmawala, Gaurang R.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.203-218
    • /
    • 2020
  • This research paper presents the outcomes in terms of mechanical and microstructural characteristics of binary and ternary concrete when exposed to elevated temperature. Three parameter were taken into account, (a) elevated temperature (i.e., 200, 400, 600 and 800℃) (b) binary concrete with cementitious material sugarcane bagasse ash (SCBA) and ground granulated blast furnace slag (GGBFS) replacement percentage (i.e., 0, 15, 20, 25 and 30%) and (c) ternary concrete with cementitious material SCBA and GGBFS replacement percentage (i.e., 0, 15, 20, 25 and 30%). A total of 285 standard cube specimens (150 mm × 150 mm × 150 mm) containing Ordinary Portland Cement (OPC), SCBA, and GGBFS were made. These specimens then exposed to several elevated temperatures for 2 h, afterword is allowed to cool at room temperature. The following basic physical, mechanical, and microstructural characteristics were then determined and discussed. (a) mass loss ratio, (b) ultrasonic pulse velocity (UPV) (c) physical behavior, (d) compressive strength, and (e) field emission scanning electron microscope (FESEM). It was found that compressive strength increases up to 400℃; beyond this temperature, it decreases. UPV value and massloss decrease with increase in temperature as well as the change in color and crack were observed at a higher temperature.

Dynamic Properties of Outwardly Propagating Spherical Hydrogen-Air Flames at High Temperatures and Pressures

  • Kwon, Oh-Chae
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.325-334
    • /
    • 2004
  • Computational experiments on fundamental un stretched laminar burning velocities and flame response to stretch (represented by the Markstein number) of hydrogen-air flames at high temperatures and pressures were conducted in order to understand the dynamics of the flames including hydrogen as an attractive energy carrier in conditions encountered in practical applications such as internal combustion engines. Outwardly propagating spherical premixed flames were considered for a fuel-equivalence ratio of 0.6, pressures of 5 to 50 atm, and temperatures of 298 to 1000 K. For these conditions, ratios of unstretched-to-stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), similar to the flames at normal temperature and normal to moderately elevated pressures, implying that the "local conditions" hypothesis can be extended to the practical conditions. Increasing temperatures tended to reduce tendencies toward preferential-diffusion instability behavior (increasing the Markstein number) whereas increasing pressures tended to increase tendencies toward preferential-diffusion instability behavior (decreasing the Markstein number).