Dynamic Properties of Outwardly Propagating Spherical Hydrogen-Air Flames at High Temperatures and Pressures

  • Kwon, Oh-Chae (School of Mechanical Engineering, Sungkyunkwan University)
  • Published : 2004.02.01

Abstract

Computational experiments on fundamental un stretched laminar burning velocities and flame response to stretch (represented by the Markstein number) of hydrogen-air flames at high temperatures and pressures were conducted in order to understand the dynamics of the flames including hydrogen as an attractive energy carrier in conditions encountered in practical applications such as internal combustion engines. Outwardly propagating spherical premixed flames were considered for a fuel-equivalence ratio of 0.6, pressures of 5 to 50 atm, and temperatures of 298 to 1000 K. For these conditions, ratios of unstretched-to-stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), similar to the flames at normal temperature and normal to moderately elevated pressures, implying that the "local conditions" hypothesis can be extended to the practical conditions. Increasing temperatures tended to reduce tendencies toward preferential-diffusion instability behavior (increasing the Markstein number) whereas increasing pressures tended to increase tendencies toward preferential-diffusion instability behavior (decreasing the Markstein number).

Keywords

References

  1. Abraham, J., Williams, F. A. and Bracco, F. V., 1985, 'A Discussion of Turbulent Flame Structure in Premixed Charges,' SAE paper No. 850345
  2. Aung, K. T., Hassan, M. I. and Faeth, G. M., 1998, 'Effects of Pressure and Nitrogen Dilution on Flame/Stretch Interactions of Laminar Premixed $H_2/O_2/N_2$ Flames,' Combustion and Flame, Vol. 112, pp. 1-15 https://doi.org/10.1016/S0010-2180(97)81753-1
  3. Aung, K. T., Hassan, M. I., Kwon, S., Tseng, L. -K., Kwon, O. C. and Faeth, G. M., 2002, 'Flame/Stretch Interactions in Laminar and Turbulent Premixed Flames,' Combustion Science and Technology, Vol. 174, pp. 61-99 https://doi.org/10.1080/713712909
  4. Bell, S. R. and Gupta, M., 1997, 'Extension of the Lean Operating Limit for Natural Gas Fueling of a Spark Ignited Engine Using Hydrogen Blending,' Combustion Science and Technology, Vol. 123, pp. 23-48 https://doi.org/10.1080/00102209708935620
  5. Bradley, D., Hicks, R. A., Lawes, M., Sheppard, C. G. W. and Woolley, R., 1998, 'The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane in Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,' Combustion and Flame, Vol. 115, pp. 126-144 https://doi.org/10.1016/S0010-2180(97)00349-0
  6. Clavin, P., 1985, 'Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows,' Progress in Energy and Combustion Science, Vol. 11, pp. 1-59 https://doi.org/10.1016/0360-1285(85)90012-7
  7. DeLuchi, M. A., 1989, 'Hydrogen Vehicles : An Evaluation of Fuel Storage, Performance, Safety, Environmental Impacts, and Cost,' International Journal of Hydrogen Energy, Vol. 14, pp. 81-130 https://doi.org/10.1016/0360-3199(89)90001-3
  8. Dowdy,D. R., Smith, D. B., Taylor, S. C. and Williams, A., 1990, 'The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects on Hydrogen/Air Mixtures,' Proceedings of the Combustion Institute, Vol. 23, pp. 325-333
  9. Gauducheau, J. L., Denet, B. and Searby, G., 1998, 'A Numerical Study of Lean $CH_4/H_2/$Air Premixed Flames at High Pressure,' Combustion Science and Technology, Vol. 137, pp. 81-99 https://doi.org/10.1080/00102209808952046
  10. Hassan, M. I., Aung, K. T., Kwon, O. C. and Faeth, G. M., 1998, 'Properties of Laminar Premixed Hydrocarbon/Air Flames at Various Pressures,' Journal of Propulsion and Power, Vol. 14, pp. 479-488 https://doi.org/10.2514/2.5304
  11. James, E. H., 1987, 'Laminar Burning Velocities of Iso-Octane-Air Mixtures-A Literature Review,' SAE paper No. 870170
  12. Keck, J. C., 1982, 'Turbulent Flame Structure and Speed in Spark-Ignition Engines,' Proceedings of the Combustion Institute, Vol. 19, pp. 1451-1466
  13. Kee, R. J., Rupley, F. M. and Miller, J. A., 1992a, 'The CHEMKIN Thermodynamic Data Base,' Report No. SAND87-8215B, Sandia National Laboratories, Albuquerque, NM
  14. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. and Miller,J. A., 1992b, 'A FORTRAN Computer Code Package for the Evaluation of Gas-Phase, Multi-Component Transport Properties,' Report No. SAND86-8246, Sandia National Laboratories, Albuquerque, NM
  15. Kee, R. J., Rupley, F. M. and Miller, J. A., 1993, 'CHEMKIN II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,' Report No. SAND89-8009B, Sandia National Laboratories, Albuquerque, NM
  16. Kim, T. J., Yetter, R. A. and Dryer, F. L., 1994, 'New Results on Moist CO Oxidation : High Pressure, High Temperature Experiments and Comprehensive Kinetic Modeling,' Proceedings of the Combustion Institute, Vol. 25, pp. 759-766
  17. Kwon, O. C., Hassan, M. I. and Faeth, G. M., 2000, 'Flame/Stretch Interactions of Premixed $Fuel-Vapor/O_2/N_2$ Flames,' Journal of Propulsion and Power, Vol. 16, pp. 513-522 https://doi.org/10.2514/2.5598
  18. Kwon, O. C. and Faeth, G. M., 2001, 'Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames : Measurements and Predictions,' Combustion and Flame, Vol. 124, pp. 590-610 https://doi.org/10.1016/S0010-2180(00)00229-7
  19. Kwon, O. C., Rozenchan, G. and Law, C. K., 2002, 'Cellular Instabilities and Self-Acceleration of Outwardly Propagating Spherical Flames,' Proceedings of the Combustion Institute, Vol. 29, pp. 1775-1783 https://doi.org/10.1016/S1540-7489(02)80215-2
  20. Kwon, S., Tseng, L. -K. and Faeth, G. M., 1992, 'Laminar Bruning Veloctities and Transition to Unstable Flames in $H_2/O_2/N_2\;and\;C_3H_8/O_2/N_2$ Mixtures,' Combustion and Flame, Vol. 90, pp. 230-246 https://doi.org/10.1016/0010-2180(92)90085-4
  21. Kyaw, Z. H. and Watson, H. C., 1992, 'Hydrogen Assisted Jet Ignition for Near Elimination of NOx and Cyclic Variability in the S. I. Engine,' Proceedings of the Combustion Institute, Vol. 24, pp. 1449-1455
  22. Law, C. K., 1988, 'Dynamics of Stretched Flames,' Proceedings of the Combustion Institute, Vol. 22, pp. 1381-1402
  23. McLean, W. J., de Boer, P. C. T., Homan, H. S. and Fagelson, J. J., 1977, 'Hydrogen as a Reciprocating Engine Fuel,' Future Automotive Fuels (J. M. Colucci and N. E. Gallopoulos, Eds.), Plenum press, New York, pp. 297-319
  24. Markstein, G. H., 1964, Non-Steady Flame Propagation, Pergamon, New York, p. 22
  25. Mathur, H. B., Das, L. M. and Patro, T. N., 1992, 'Hydrogen Fuel Utilization in CI Engine Powered End Utility Systems,' International Journal of Hydrogen Energy, Vol. 17, pp. 369-374 https://doi.org/10.1016/0360-3199(92)90174-U
  26. Mueller, M. A., Kim, T. J., Yetter, R. A. and Dryer, F. L., 1999, 'Flow Reactor Studies and Kinetic Modeling of the $H_2/O_2$ Reaction,' International Journal of Chemical Kinetics, Vol. 31, pp. 113-125 https://doi.org/10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0
  27. Ogden, J. M., 1999, 'Developing an Infrastructure for Hydrogen Vehicles : A Southern California Case Study,' International Journal of Hydrogen Energy, Vol. 24, pp. 709-730 https://doi.org/10.1016/S0360-3199(98)00131-1
  28. Poulton, M. L., 1994, Alternative Fuels for Road Vehicles, Computational Mechanics, Southampton, UK, pp. 157-167
  29. Reynolds, W. C., 1986, 'The Element Potential Method for Chemical Equilibrium Analysis : Implementation in the Interactive Program STAN-JAN,' Department of Mechanical Engineering Report, Stanford University, Stanford, CA
  30. Rogg, B., 1991, 'RUN-1DL : The Cambridge Universal Laminar Flame Code,' Technical Report CUED/A-THERMO/TR39, Department of Engineering, University of Cambridge, Cambridge, UK
  31. Strehlow, R. A. and Savage, L. D., 1978, 'The Concept of Flame Stretch,' Combustion and Flame, Vol. 31, pp. 209-211 https://doi.org/10.1016/0010-2180(78)90130-X
  32. Sun, C. J., Sung, C. J., He, L. and Law, C. K., 1999, 'Dynamics of Weakly Stretched Flames : Quantitative Description and Extraction of Global Flame Parameters,' Combustion and Flame, Vol. 118, pp. 108-128 https://doi.org/10.1016/S0010-2180(98)00137-0
  33. Thomas, A., 1983, 'Flame Development in Spark-Ignition Engines,' Combustion and Flame, Vol. 50, pp. 305-322 https://doi.org/10.1016/0010-2180(83)90072-X
  34. Verhelst, S. and Sierens, R., 2001, 'Aspects Concerning the Optimization of a Hydrogen Fueled Engine,' International Journal of Hydrogen Energy, Vol. 26, pp. 981-985 https://doi.org/10.1016/S0360-3199(01)00031-3
  35. Yamaoka, I. and Tsuji, H., 1992, 'An Anomalous Behavior of Methane-Air and Methane-Hydrogen-Air Flames Diluted with Nitrogen in a Stagnation Flow,' Proceedings of the Combustion Institute, Vol. 24, pp. 145-152
  36. Yu, G., Law, C. K. and Wu, C. K., 1986, 'Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition,' Combustion and Flame, Vol. 63, pp. 339-347 https://doi.org/10.1016/0010-2180(86)90003-9