• Title/Summary/Keyword: Elemental Mercury

Search Result 55, Processing Time 0.027 seconds

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Characteristics of Mercury Oxidation by an SCR Catalyst with Gas Composition (가스조성에 따른 선택적 환원촉매의 수은 산화 특성)

  • Lee, Sang-Sup;Kim, Kwang-Yul;Oh, Kwang-Joong;Jeon, Jun-Min;Kim, Do-Jeung;Kim, Ju-Yeong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.125-132
    • /
    • 2012
  • Mercury oxidation in an SCR(selective catalytic reduction) catalyst was tested in this study with the conditions simulating the SCR system in full-scale coal-fired flue gas. A commercially available SCR catalyst was located in a temperature-controlled reactor system, and simulated gas was injected into the reactor. Mercury oxidation efficiency was determined from the difference between inlet and outlet elemental mercury concentrations. A control experiment was carried out with the gas composition of 12% $CO_{2}$, 5% $H_{2}O$, 5% $O_{2}$, 500 ppm $SO_{2}$, 400 ppm NO, 400 ppm $NH_{3}$, 5 ppm HCl, and 20 ${\mu}g/m^{3}$ Hg. Additional tests were conducted with different gas composition from the control condition to investigate the effect of gas composition on mercury oxidation in the SCR catalyst.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

Physical Property with the Manufacturing Conditions of Activated Carbon for Mercury Adsorption (제조조건에 따른 활성탄의 특성 및 수은 흡착 효율)

  • Min, Hyo-Ki;Ahmad, Tanveer;Park, Min;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.302-314
    • /
    • 2015
  • There is an adsorption method using activated carbon as a typical method for removing elemental mercury. Physical characteristics of activated carbon such as specific surface area and volume of pore (micro and meso) have positive effect for mercury adsorption. Activated carbon is carbon-based material with a high specific surface area. This activated carbon can be manufactured through carbonization and activation process. In this process, physical characteristics of specific surface area and pore distribution are changed by controlling operating parameters like temperature, time and reagent of activation. In this study, we evaluated characteristics of activated carbons manufactured from pinewood and coal with the operating parameters. We evaluated mercury adsorption capacities of the activated carbons having excellent physical characteristics and compared those to the commercial activated carbon.

Biosequestration, Transformation, and Volatilization of Mercury by Lysinibacillus fusiformis Isolated from Industrial Effluent

  • Gupta, Saurabh;Goyal, Richa;Nirwan, Jashan;Cameotra, Swaranjit Singh;Tejoprakash, Nagaraja
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.684-689
    • /
    • 2012
  • In the present study, an efficient mercury-tolerant bacterial strain (RS-5) was isolated from heavy-metalcontaminated industrial effluent. Under shake flask conditions, 97% of the supplemented mercuric chloride was sequestered by the biomass of RS-5 grown in a tryptone soy broth. The sequestered mercuric ions were transformed inside the bacterial cells, as an XRD analysis of the biomass confirmed the formation of mercurous chloride, which is only feasible following the reaction of the elemental mercury and the residual mercuric chloride present within the cells. Besides the sequestration and intracellular transformation, a significant fraction of the mercury (63%) was also volatilized. The 16S rRNA gene sequence of RS-5 revealed its phylogenetic relationship with the family Bacillaceae, and a 98% homology with Lysinibacillus fusiformis, a Gram-positive bacterium with swollen sporangia. This is the first observation of the sequestration and volatilization of mercuric ions by Lysinibacillus sp.

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Association between amalgam removal and urinary mercury concentration: a pilot study (아말감 충전물 제거와 뇨중 수은농도의 관련성 평가: 예비연구)

  • Baek, Hye-Jin;Sa, Kong-Joon;An, Seo-Young;Lee, Hee-Kyung;Song, Keun-Bae;Choi, Youn-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.2
    • /
    • pp.431-438
    • /
    • 2012
  • Objectives : The aim of this study was assessment of the variation of urinary mercury concentrations after removal of amalgam fillings in children. Methods : 10 elemental school children with amalgam filling tooth surfaces were took part in this study. One dentist recorded the number of amalgam filling surface, and general characteristics of subjects were surveyed by questionnaire. Each urine samples were collected before, immediately after and after 24 hours amalgam removal. The statistical analysis was performed using the SPSS 18.0. Results : The mean concentration urinary mercury immediately after amalgam removal was higher ($5.70{\pm}1.20{\mu}g/g$ creatinine) than before amalgam removal ($5.28{\pm}1.53{\mu}g/g$ creatinine). The mean concentration urinary mercury level whose have 1-10 amalgam removal surfaces was increased after amalgam removal compared with before. Conclusions : Mercury concentration in urine was influenced by amalgam removal.

Source Identification of Gaseous Mercury Measured in New York State Using Hybrid Receptor Modeling (수용원 모델을 사용한 대기 중 수은 오염원의 위치 추정에 대한 연구)

  • Han Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.179-189
    • /
    • 2006
  • Ambient gas phase mercury concentrations including elemental mercury ($Hg^0$) were measured at the Potsdam, Stockton, and Sterling sites in NY from 2000 to 2003. Also, concentrations of ambient reactive gaseous mercury (RGM; $Hg^{2+}$) were measured at the Potsdam site during one year. The contribution of RGM($4.2{\pm}6.4pg/m^3$) was about $0.2{\sim}3%$ of the total gas phase mercury concentration measured (TGM: $1.84{\pm}1.24,\;1.83{\pm}0.32,\;3.02{\pm}2.14ng/m^3$ in Potsdam. Stockton, and Sterling, respectively) at the receptor sites. Potential Source Contribution Function (PSCF), a hybrid receptor modeling incorporating backward trajectories was performed to identify source areas of TGM. Using PSCF, southern New York, North Carolina, and eastern Massachusetts were identified as important source areas in the United States, while the copper smelters and waste incinerators located in eastern Quebec and Ontario were determined to be significant sources in Canada. The Atlantic Ocean was suggested to be a possible mercury source. PSCF incorporating back-dispersion and deposition was applied for RGM , as well as PSCF based on 2-days back-trajectories. Two different approaches yielded considerably different results, primarily due to the consideration of dispersion rather than deposition. Using back-trajectory based PSCF, eastern Ohio, southern New York, and southern Pennsylvania where large coal -fired power plants area located were identified as the large sources in US. Metallurgical industry located in eastern Quebec was resolved as well. From the result of back-dispersion and deposition based PSCF, Pennsylvania, mining facilities around Lake Superior, Toronto, Boston, MA, Quebec, and coal power plants in NY were identified to be the significant source areas for Potsdam site.

Measurements of Atmospheric Gaseous Elemental Mercury over the Yellow Sea during 2007-2008

  • Nguyen, Duc Luong;Kim, Jin-Young;Shim, Shang-Gyoo;Jin, Hyoun-Cher;Zhang, Xiao-Shan
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2009.10a
    • /
    • pp.255-258
    • /
    • 2009
  • This study shows that the $Hg^0$ background concentration over the Yellow Sea was generally higher than those observed over other seas/oceans around the world. $Hg^0$ concentrations measured in the urban stomophere were significantly higher than the background concentration in China. Elevated $Hg^0$ concentrations at Deokjeok Island in Korea were attributed to long-range transport of mercury from high emission areas in China.

  • PDF

The Long-term Variation Patterns of Atmospheric Mercury in Seoul, Korea from 1997 to 2002 (서울시 대기 중 수은농도의 장기변동 특성 1997~2002)

  • 김민영;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • The concentration of gaseous elemental mercury (Hg) was measured concurrently with relevant environmental parameters from Yang-Jae monitoring station in Seoul during Sept. 1997 to June 2002. Although data collection was disrupted for certain periods, the grand mean concentration of Hg for this five year period was found at 5.32 $\pm$ 3.53 ng m$^{-3}$ (N = 27,170). Because of short resolution of data acquisition, we were able to examine the temporal variability of Hg at varying time scale. The diurnal variability of Hg, when investigated for each of those five years, indicated consistently the dominance of nighttime over daytime. If examined at seasonal scale, Hg level was systematically higher during winter/spring than summer/fall period. The results of this short-term variability were best explained by the combined effects of such factors as meteorological conditions (formation of inversion layer and seasonal changes) and anthropogenic source processes. However, examination of long-term variation Pattern was much more complicated to explain. Thus, extension of our study is needed to diagnose the future direction in long-term trend of Hg behavior.