• 제목/요약/키워드: Element variables

검색결과 1,390건 처리시간 0.022초

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

연성파괴 해석을 위한 비선형 유한요소 모델의 개발 -소형 컴퓨터를 위한 - (The Development of a Non-Linear Finite Element Model for Ductile Fracture Analysis - For Mini-Computer -)

  • 정세희;조규종
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.25-33
    • /
    • 1986
  • 본 연구에서는 선단요소 해법의 방법을 토대로 소형컴퓨터를 위한 비선형 유한요소의 개발을 시도한 것이다. 주로 참조한 선단요소 해법의 프로그램은 Hinton과 Owen이 작성한 프로그램이며 원판메모리를 최대로 활용하여, 활동변수를 최소화 시키므로써, 실제 소형컴퓨터인 HP-3000II(512KB) 컴퓨터에서 총 자유도가 1000정도 되는 유한요소까지는, 해석이 가능하도록 만들어지게 되었다. 이와같이 완성된 프로그램의 응용성과 신뢰성을 검토해 보기 위해서 표준 CT 시편의 유한요소 를 작성하여(124 element, 428 node, 941 freedom) 크랙선단에 형성되는 소성역의 형상과 소성변형 크기를 수치적으로 추적하여 본 결과, 실험결과와 매우 잘 일치함을 볼 수 있어서 프로그램의 신뢰성을 확인 할 수 있었다. 이때 실험은 SUS-304스테인 레스강단의 소성역을 형성시킨다음, 재결정 방법에 의해 소성역의 형상과 크기를 가시 화 및 정량화 하여서 계산결과와 비교 하였다.

Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Eun-Jin
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.105-122
    • /
    • 2001
  • A new three-dimensional 13-node hexahedral element with rotational degrees of freedom, which is designated as MR-H13 element, is presented. The proposed element is established by adding five nodes to one of the six faces of basic 8-node hexahedral element. The new element can be effectively used in the connection between the refined mesh and the coarser mesh. The derivation of the current element in this paper is based on the variational principles in which the rotation and skew-symmetric stress are introduced as independent variables. Numerical examples show that the performance of the new element is satisfactory.

유한요소법을 이용한 척추 삽입형 경추판 시스템에 대한 생체역학적 피로해석 (Biomechanical Fatigue Analysis of Cervical Plate Systems by using a Computer Simulation Based on Finite Element Method)

  • 김성민;양인철;조성윤
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.96-103
    • /
    • 2008
  • In this study, we performed the biomechanical analysis of cervical plate systems by using a computer simulation based on finite element method to derive reliable model by analysis of design variables and fatigue behavior. To simulate the cervical spine movement in-vivo state by surgery, we modeled the cervical plate system which consisted of screws, rings, rivets, and plate and Ultra High Molecular Weight Polyethylene (UHMWPE) Block. The experiment of cervical plate system followed the ASTM F1717 standards that covered the materials and methods for the static and fatigue testing. The result of computer simulation is compared with experimented test. We expected this study is to derive reliable results by analysis of design variables and fatigue behavior for developing a new model.

프레임 구조물의 확률론적 동적 민감도 해석에 관한 연구 (A Study on the Stochastic Sensitivity Analysis in Dynamics of Frame Structure)

  • 부경대학교
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.435-447
    • /
    • 1999
  • It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second order perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method: the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, whereas the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they can be readily adapted to fit into the existing finite element codes whose element derivative matrices can be explicitly generated. The numerical results of two cases -2 dimensional portal frame for the comparison with reference and 3-dimensional frame structure - for the deterministic sensitivity analysis are presented.

  • PDF

유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계 (The design of magnetic circuit of magnetostrictive actuator using finite element method)

  • 이석호;박영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties

  • Singh, B.N.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.53-74
    • /
    • 2002
  • Composites exhibit larger dispersion in their material properties compared to conventional materials due to larger number of parameters associated with their manufacturing processes. A $C^0$ finite element method has been used for arriving at an eigenvalue problem using higher order shear deformation theory for initial buckling of laminated composite plates. The material properties have been modeled as basic random variables. A mean-centered first order perturbation technique has been used to find the probabilistic characteristics of the buckling loads with different edge conditions. Results have been compared with Monte Carlo simulation, and those available in literature.

반용융 재료의 압출공정에 관한 유한요소 해석 (Finite Element Analysis of Extrusion Process in Semi-Solid State)

  • 황재호;고대철;민규식;김병민;최재찬
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.364-374
    • /
    • 1998
  • It is the objective of this study to analyze the effect of various process variables on the quality of extruded product and extrusion force for semi-solid extrusion of Al2024 with solid phase structure of globular type by the finite element method. Process variables are initial solid fraction, ram speed, semi-angle of die, and reduction in area. The results of experiment are compared with those of simulation in order to verify the usefulness of the developed finite element program. The flow and deformation of semi-solid alloy are analyzed by coupling by coupling the deformation of porous skeleton and the flow of liquid phase. It is also assumed that initial solid fraction is homogeneous.

  • PDF

Optimum design of parabolic and circular arches with varying cross section

  • Uzman, Umit;Daloglu, Ayse;Saka, M. Polat
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.465-476
    • /
    • 1999
  • A structural optimization process is presented for arches with varying cross-section. The optimality criteria method is used to develop a recursive relationship for the design variables considering displacement, stresses and minimum depth constraints. The depth at the crown and at the support are taken as design variables first. Then the approach is extended by taking the depth values of each joint as design variable. The curved beam element of constant cross section is used to model the parabolic and circular arches with varying cross section. A number of design examples are presented to demonstrate the application of the method.

확률 유한요소 이차섭동법을 사용한 구조물 최적설계 (Structural Optimization Using Stochastic Finite Element Second-Order Perturbation Method)

  • 임오강;이병우
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1822-1831
    • /
    • 1995
  • A general formulation of the design optimization problem with the random parameters is presented here. The formulation is based on the stochastic finite element second-order perturbation method ; it takes into full account of the stress and displacement constraints together with the rates of change of the random variables. A method of direct differentiation for calculating the sensitivity coefficients in regard to the governing equation and the second-order perturbed equation is derived. A gradient-based nonlinear programming technique is used to solve the problem. The numerical results are specifically noted, where the stiffness parameter and external load are treated as random variables.