• 제목/요약/키워드: Element variables

검색결과 1,400건 처리시간 0.024초

이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토 (Feasibility Study on Similarity Principle in Discrete Element Analysis)

  • 윤태영;박희문
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

Formulation Method for Solid-to-Beam Transition Finite Elements

  • 임장권;송대한;송병호
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1499-1506
    • /
    • 2001
  • Various transition elements are used in general for the effective finite element analysis of complicated mechanical structures. In this paper, a solid-to-beam transition finite element, which can b e used for connecting a C1-continuity beam element to a continuum solid element, is proposed. The shape functions of the transition finite element are derived to meet the compatibility condition, and a transition element equation is formulated by the conventional finite element procedure. In order to show the effectiveness and convergence characteristics of the proposed transition element, numerical tests are performed for various examples. As a result of this study, following conclusions are obtained. (1) The proposed transition element, which meets the compatibility of the primary variables, exhibits excellent accuracy. (2) In case of using the proposed transition element, the number of nodes in the finite element model may be considerably reduced and the model construction becomes more convenient. (3) This formulation method can be applied to the usage of higher order elements.

  • PDF

다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계 (AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS)

  • 최재민;전흥재;이수홍;한종현
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

LHS기법을 이용한 불연속암반구조물의 확률유한요소해석기법개발 (Development of Stochastic Finite Element Model for Underground Structure with Discontinuous Rock Mass Using Latin Hypercube Sampling Technique)

  • 최규섭;정영수
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.143-154
    • /
    • 1997
  • 본 연구에서는 지하암반구조물의 구조해석시 불연속암반체의 물성변이를 고려할 수 있는 확률론적 해석기법을 개발하였다. 수치해석적 접근은 몬테칼로모사기법의 단점을 보완한 LHS기법을 사용하였고, 불연속면의 영향은 단층, 벽개 등과 같이 불연속성이 뚜렷한 지역에서 적용성이 높은 절리유한요소모델을 사용하였다. 재료특성에 대한 확률변수는 불연속면의 수직강성과 전단강성을 다확률변수로 사용하였으며, 이들은 확률공간에서 정규분포를 갖는 경우에 대하여 고려하였다. 본 연구에서 개발된 수치해석프로그램은 검증예제를 통하여 타당성을 확인하였으며, 가상의 불연속면군이 존재하는 지하원형공동에 대한 해석을 통하여 프로그램의 적용성을 확인하였다.

  • PDF

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation

  • Fortas, Lahcene;Messai, Abderraouf;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.31-54
    • /
    • 2022
  • This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.

ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용 (An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

중공 튜브 성형을 위한 만네스만 천공기의 개발 및 유한요소법을 이용한 공정변수 설계 (Development of Rotary Tube Piercing Machine and Parametric Study on Design Variables using Finite Element Analysis)

  • 이형욱;이근안;김응주;최석우;장병록
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.364-367
    • /
    • 2007
  • Typical seamless tube production methods are an extrusion and a rotary tube piercing. The rotary piercing process is more competitive than the extrusion process form view point of productivity, quality, and flexibility. It consists of twin rolling mills, a pair of disc or flat guides, and a plug. Twin rolling mills are skewed with proper angles in two directions. A round billet is progressively fed forward and rotated due to the rotation of twin rolling mills. Internal crack initiation and growth at central area of the billet are gradually progress because of the repeating actions of tension and rotation. Design variables in the rotary piercing rolling process are the feed angle, the cross angle, the reduction ratio, and the position of plug. In this work, a rotary tube piercing machine was developed and parametric studies on design variables were carried out using finite element analysis. The Brozzo ductile fracture criterion was utilized to determine an internal crack initiation.

  • PDF

확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석 (The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method)

  • 김준연;정철용;이선영;천창렬
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권4호
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF