• 제목/요약/키워드: Element technique

검색결과 2,882건 처리시간 0.036초

적층복합재료 및 샌드위치 판의 적응해석 (Adaptive Analysis of Multilayered Composite and Sandwich Plates)

  • 박진우;김용협
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.224-227
    • /
    • 2001
  • Adaptive analysis of multilayered composite and sandwich plates is carried out. The adaptive analysis is based on a finite element error form, which measures the difference between the through-the-thickness distribution of finite element displacement and the actual displacement. The region where the error-measure exceeds the prescribed admitted error value, the finite element mesh locally refined in the thickness direction using the mesh superposition technique. Several numerical tests are conducted to validate the effectiveness of the current approach for adaptive analysis of laminated plates.

  • PDF

피로 균열 형상 진전의 수치 모델링 기법에 관한 연구 (A Numeric Modelling Technique for the Shape Development of Fatigue Crack)

  • 한문식
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.225-233
    • /
    • 1999
  • This paper describes a versatile finite element technique which has been used to investigate of wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems analyzed to date include the surface cracks in leak-before-break situations, the development of quarter-elliptical corner defects, planar semi-elliptical surface defects and the fatigue growth of defects.

  • PDF

최적화 기법을 이용한 보울트 체결체의 강성 평가 (Stiffness Determination Of A Bolted Member Using Optimization Technique)

  • 김태완;조덕상;성기광;손용수;박성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.151-157
    • /
    • 1993
  • In this paper a useful method on evaluating the joint stiffness of bolted memeber was introduced using optimization technique on the basis of Finite Element Method. A finite element model having one directional gap element at bo undary area was introduced to compensate the prying force in jointed members which might caused by geometrical configuration of members. Results showed a good aggrement with classical method in certain range and will be available to definine the design margine of pre-load design.

  • PDF

EXTRAPOLATED EXPANDED MIXED FINITE ELEMENT APPROXIMATIONS OF SEMILINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.327-334
    • /
    • 2014
  • In this paper, we construct extrapolated expanded mixed finite element approximations to approximate the scalar unknown, its gradient and its flux of semilinear Sobolev equations. To avoid the difficulty of solving the system of nonlinear equations, we use an extrapolated technique in our construction of the approximations. Some numerical examples are used to show the efficiency of our schemes.

유한요소 모델의 절점 활성화 기법 : Ⅰ. 이론 (Node Activation Technique for Finite Element Model : Ⅰ. Theory)

  • 조진연;김도년;김승조
    • 한국항공우주학회지
    • /
    • 제31권4호
    • /
    • pp.26-34
    • /
    • 2003
  • 본 논문에서는 이동최소자승 근사법 등의 무요소 근사법을 이용하여 유한요소모델 절점의 연결성과 무관하게 유한요소 절점을 자유로이 활성화시킬 수 있는 절점활성화 기법을 제안하고, 제안된 방법의 타당성을 고찰하기 위해 일관성 조건, 수치해의 유계성 등에 대한 이론적 고찰을 수행한다. 제안된 절점활성화 기법을 이용하면 많은 수의 유한요소 절점 중 관심이 있는 일부 절점만을 선택, 활성화시켜 이들만을 미지수로 이용하여 문제를 해석할 수 있기 때문에 설계 및 재해석을 효율적으로 수행할 수 있다.

Numerical simulation of an external prestressing technique for prestressed concrete end block

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Saibabu, S.;Lakshmanan, N.;Jayaraman, R.;Senthil, R.
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.605-619
    • /
    • 2009
  • This paper presents the details of finite element (FE) modeling and analysis of an external prestressing technique to strengthen a prestressed concrete (PSC) end block. Various methods of external prestressing techniques have been discussed. In the proposed technique, transfer of external force is in shear mode on the end block creating a complex stress distribution. The proposed technique is useful when the ends of the PSC girders are not accessible. Finite element modeling issues have been outlined. Brief description about material nonlinearity including key aspects in modeling inelastic behaviour has been provided. Finite element (FE) modeling including material, loading has been explained in depth. FE analysis for linear and nonlinear static analysis has been conducted for varying external loadings. Various responses such as out-of-plane deformation and slip have been computed and compared with the corresponding experimental observations. From the study, it has been observed that the computed slope and slip of the steel bracket under external loading is in good agreement with the corresponding experimental observations.

직접적분법과 확률론적 유한요소법을 이용한 구조물의 확률론적 동적 해석 (Developing A Stochastical Dynamic Analysis Technique for Structures Using Direct Integration Methods)

  • 이정재
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.54-62
    • /
    • 1994
  • The expanding technique of the Stochastic Finite Element Method(SFEM) is proposed in this paper for adapting direct integration methods in stochastical dynamic analysis of structures. Grafting the direct integration methods and the SFEM together, one can deal with nonlinear structures and nonstationary process problems without any restriction. The stochastical central diffrence and stochastic Houbolt methods are introduced to show the expanding technique, and their adaptabilities are discussed. Results computed by the proposed method (the Stochastic Finite Element Method in Dynamics: SFEMD) for two degree-of-free- dom system are compared with those obtained by Monte Carlo Simulation.

  • PDF

유한요소법에 의한 이종재료 접합면에 수직인 균열의 응력확대계수 결정 (Determination of Stress Intensity Factor for a Crack Perpendicular to Bimaterial Interface by Finite Element Method)

  • 임원균;김상철;이창수
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2398-2406
    • /
    • 1993
  • Abdi's numerical method(ref.13) for representing a stress singularity by shifting the mid-side nodes of isoparametric elements is reviewed. A simple technique to obtain the optimal position of the mid-side nodes in quadratic isoparametric finite element is presented. From this technique we can directly obtain the position of the side-nodes adjacent to the crack tip. It is also observed that the present technique provides good accuracy for the expression of the opening displacement and the determination of the mid-side nodes for more wide range of material properties than that obtained by Abdicant the finite element method is applied to determine stress intensity factors for pressurized crack perpendicular to and terminating at the interface of two bonded dissimilar materials. A proper definition for stress intensity factors of a crack perpendicular to bimaterial interface is provided. It is based upon a near-tip displacement solutions on the crack surface for interface crack between two dissimilar materials. Numerical testing is carried out with the eight-node and six-node elements. The results obtained are compared with the previous solutions.

LHS기법을 이용한 불연속암반구조물의 확률유한요소해석기법개발 (Development of Stochastic Finite Element Model for Underground Structure with Discontinuous Rock Mass Using Latin Hypercube Sampling Technique)

  • 최규섭;정영수
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.143-154
    • /
    • 1997
  • 본 연구에서는 지하암반구조물의 구조해석시 불연속암반체의 물성변이를 고려할 수 있는 확률론적 해석기법을 개발하였다. 수치해석적 접근은 몬테칼로모사기법의 단점을 보완한 LHS기법을 사용하였고, 불연속면의 영향은 단층, 벽개 등과 같이 불연속성이 뚜렷한 지역에서 적용성이 높은 절리유한요소모델을 사용하였다. 재료특성에 대한 확률변수는 불연속면의 수직강성과 전단강성을 다확률변수로 사용하였으며, 이들은 확률공간에서 정규분포를 갖는 경우에 대하여 고려하였다. 본 연구에서 개발된 수치해석프로그램은 검증예제를 통하여 타당성을 확인하였으며, 가상의 불연속면군이 존재하는 지하원형공동에 대한 해석을 통하여 프로그램의 적용성을 확인하였다.

  • PDF

Effect of link length in retrofitted RC frames with Y eccentrically braced frame

  • INCE, Gulhan
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.553-564
    • /
    • 2022
  • Many existing reinforced concrete (RC) structures need to be strengthening for reason such as poor construction quality, low ductility or designing without considering seismic effects. One of the strengthening methods is strengthening technique with eccentrically braced frames (EBFs). The characteristic element of these systems is the link element and its length is very important in terms of seismic behavior. The link element of Y shaped EBF systems (YEBFs) is designed as a short shear element. Different limits are suggested in the literature for the link length. This study to aim experimentally investigate the effect of the link length for the suggested limits on the behavior of the RC frame system and efficiency of strengthening technique. For this purpose, a total of 5 single story, single span RC frame specimens were produced. The design of the RC frames was made considering seismic design deficiencies. Four of the produced specimens were strengthened and one of them remained as bare specimen. The steel YEBFs were used in strengthening the RC frame and the link was designed as a shear element that have different length with respect to suggested limits in literature. The length of links was determined as 50mm, 100mm, 150mm and 200mm. All of the specimens were tested under cyclic loads. The obtained results show that the strengthening technique improved the energy consumption and lateral load bearing capacities of the bare RC specimen. Moreover, it is concluded that the specimens YB-2 and YB-3 showed better performance than the other specimens, especially in energy consumption and ductility.