• Title/Summary/Keyword: Element simulation

Search Result 4,550, Processing Time 0.039 seconds

Development of web-based Simulation System for Finite Element Analysis (웹기반 유한요소해석 시스템 개발)

  • Yoon E. Y.;Kim J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.384-388
    • /
    • 2005
  • The purpose of this paper is to develop web-based simulation system which can be used anytime, anywhere without expensive hardware and software. In this paper, a web-based simulation system was developed by utilizing finite element analysis and client/server system using visual C++ and ASP. The client/server system consist of two modules, post-processor, management system module. The input data for FEM calculation is transferred to the management system. After that, the result from the simulation can be visualized through the post-processor module. By using this system, small industries and individuals can considerably save the time and expense.

  • PDF

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

Three-dimensional cure simulation of composite structures by the finite element method (유한요소법을 이용한 복합재 구조물의 3차원 경화 수치모사)

  • Min, Kuoung-Jae;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.39-45
    • /
    • 2002
  • In this paper, a finite element formulation was introduced for the three-dimensional cure simulation of composite structures. Based on the formulation, a three-dimensional finite element code was developed. Numerical examples found in the literatures were solved for code verification. Results from the present analyses agreed well with the measured cure-induced temperatures. Unlike in one or two dimensional analysis, temperature and degree of cure were able to be calculated at any point within composite structures in the present analysis. The finite element program can be used for the cure simulation of composite structures with arbitrary geometry under non-uniform autoclave temperature distribution.

Three-dimensional Forging Simulation with Tetrahedral Elements and Hexahedral Elements and their Comparison with Experiments (사면체요소와 육면체요소를 이용한 삼차원 단조 시뮬레이션 결과의 비교 및 검증)

  • Lee, Min-Cheol;Baek, Jong-Pa;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1637-1641
    • /
    • 2007
  • In this paper, we simulate a rotor pole cold forging process by a forging simulator with both tetrahedral and hexahedral element capabilities and compare the predictions obtained by the two approaches with the experiments. Hexahedral element capability runs manually while tetrahedral element capability runs automatically with help of an intelligent remeshing technique. It is shown that the tetrahedral element capability can give quite accurate solution if assisted by the intelligent remeshing technique even though the tetrahedral element itself is not theoretically and numerically clear.

  • PDF

Compaction of Aggregated Ceramic Powders, Discrete Element and Finite Element Simulations

  • Pizette, P.;Martin, C. L.;Delette, G.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.187-188
    • /
    • 2006
  • In contrast with the Finite Element Method, the Discrete Element Method (DEM) takes explicitly into account the particulate nature of powders. DEM exhibits some drawbacks and many advantages. Simulations can be computationally expensive and they are only able to represent a volume element. However, these simulations have the great advantage of providing a wealth of information at the microstructural level. Here we demonstrate that the method is well suited for modelling, in coordination with FEM, the compaction of ceramic $UO_2$ particles that have been aggregated. Aggregates of individual ceramic crystallites that are strongly bonded together are represented by porous spheres.

  • PDF

Behaviors of the Spacers on the Galloping of Power Transmission Lines

  • Kim, Hwan-Seong;Nguyen, Tuong-Long;Byun, Gi-Sig
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.128-133
    • /
    • 2003
  • In this paper, we have proposed a method by using virtual simulation to calculate the behaviors of spacers to avoid conductor galloping with the hanging composite polymer spacer between conductors on different phases. We have considered with three types of modeling considerations for the analysis of galloping in power transmission lines, such as iced-single conductors without spacer, iced-single conductors with spacers, and iced-two bundle conductors with spacers. In simulation, the finite element method is used to calculate the structural response with geometric nonlinear behavior. The iced conductor is modeled by two beam-element faces with which it is connected. The ANSYS program is applied too. First, the calculation results show that the two beam-element model is very suitable to make a virtual simulation. Second, the amplitude of conductor galloping is reduced after hanged spacers. Third, when number of spacer is increased, the maximum magnitude of natural frequency of iced conductor will reduce. Final, the behaviors of spacers are verified in viewpoint of standard cases.

  • PDF

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF

Analysis of CANDU-6 Transition Core Refuelled from 37-Element Fuel to CANFLEX-NU Fuel

  • Jeong, Chang-Joon;Lee, Young-Ouk;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.77-82
    • /
    • 1997
  • The CANDU-6 transition core refuelled from 37-element fuel to CANFLEX-NU fuel has been evaluated by an 100full power day time-dependent fuel-management simulation to find the core compatibility with the CANFLEX fuel loading. The simulation calculations for the transition core were carried out with the RFSP code, provided by the cell averaged fuel properties obtained from the POWDERPUFS-V code. The simulation results were compared with those of the current 37-element fuel loading only. The results show that the CANFLEX-NU fuel bundles will be compatible with the CANDU-6 reactor because the core physics characteristics of CANFLEX-NU fuel are very similar to those of the 37-element fuel bundle.

  • PDF

A Study on Transient Numerical Simulation on Heat Transfer Characteristics in the Resistive SFCL

  • Kim Chul-Ho;Lee Kee-Man;Ryu Kyung-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.14-19
    • /
    • 2005
  • A transient numerical simulation was conducted to have variation of temperature on an element of resistive Superconducting Fault Current Limiter (SFCL) under quench condition. It is very important engineering information for an optimum design of cryogenic system for cooling of a resistive SFCL element. A bifilar coil for resistive SFCL for 10 MVA system was incorporated as a model in this numerical study. From the numerical simulation result, it was found that the averaged temperature on the shunt and Bi-2212 element at 500 kW, 100 ms was 711.1 K and 198.4 K respectively. The temperature variation with the change of the hot-spot size and time is also obtained. The maximum temperature was continuously increased in all cases until the hot-spot stops at 100ms and it was going down after then. Such as, the details of temperature distribution on the SFCL element obtained from this numerical study and it should be very valuable information on the decision of the cooling capacity of cryogenic system.