• Title/Summary/Keyword: Element group

Search Result 1,213, Processing Time 0.029 seconds

Finite element calculation of the interaction energy of shape memory alloy (형상기억합금 상호작용 에너지의 유한요소 계산)

  • Yang, Seung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for.

  • PDF

Free Vibrations of Thin Shells with Isogeometric Approach

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Free vibration analysis of thin shells is carried out by using isogeometric approach. For this purpose, a thin shell element based on Kirchhoff-Love shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and also used to derive all terms required in the isogeometric element formulation. Gauss integration rule is used for stiffness and mass matrices. The present shell element is then applied to examine vibrational behaviours of thin plate and shell structures. From numerical results, it is found be that reliable natural frequencies and associated mode shapes of thin shell structures can be predicted by the present isogeometric shell element.

A Construction of the Multiplier and Inverse Element Generator over $GF(3^m)$ ($GF(3^m)$ 상의 승산기 및 역원생성기 구성)

  • 박춘명;김태한;김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.747-755
    • /
    • 1990
  • In this paper, we presented a method of constructing a multiplier and an inverse element generator over finite field GF(3**m). We proposed the multiplication method using a descending order arithmetics of mod F(X) to perform the multiplication and mod F(X) arithmetics at the same time. The proposed multiplier is composed of following parts. 1) multiplication part, 2) data assortment generation part and 5) multiplication processing part. Also the inverse element generator is constructed with following parts. 1) multiplier, 2) group of output registers Rs, 3) multiplication and cube selection gate Gl, 4) Ri term sequential selection part. 5) cube processing part and 6) descending order mod F(X) generation part. Especially, the proposed multiplier and inverse element generator give regularity, expansibility and modularity of circuit design.

  • PDF

Nonlinear Analysis of RC Structures using Assumed Strain RM Shell Element

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Nonlinear analysis of reinforced concrete structures is carried out by using Reissner-Mindlin (RM) shell finite element (FE). The brittle inelastic characteristic of concrete material is represented by using the elasto-plastic fracture (EPF) material model with the relevant material models such as cracking criteria, shear transfer model and tension stiffening model. In particular, assumed strains are introduced in the formulation of the present shell FE in order to avoid element deficiencies inherited in the standard RM shell FE. The arc-length control method is used to trace the full load-displacement path of reinforced concrete structures. Finally, four benchmark tests are carried out and numerical results are provided as future reference solutions produced by RM shell element with assumed strains.

Evaluation of Hormone Deficiency in Vertebral Body: Analysis of Bone Structure and Quality (호르몬 결핍이 척추체에 미치는 영향 평가: 골의 구조학적 및 질적 요소 분석)

  • Kim, Chi-Hoon;Woo, Dae-Gon;Park, Ji-Hyung;Lee, Beob-Yi;Kim, Chi-Hyun;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.92-101
    • /
    • 2010
  • This study evaluated the structure and quality of osteoporotic vertebral bone. To induce osteoporosis, eight rats were ovariectomized (OVX). All rats were divided into two groups (Normal group: 4, OVX group: 4). Total lumbar vertebrae for each rat were scanned by in-vivo ${\mu}CT$ at 0, 4 and 8 weeks. Morphological characteristics (BV/TV, Tb.Th, Tb.N, Tb.Sp and SMI) were calculated by in-vivo ${\mu}CT$ image analyzer. Three dimensional finite element models were analyzed to investigate bone strength of OVX and Normal groups. Moreover, the elastic modulus was quantitatively analyzed to evaluate the quality changes of osteoporotic bone. In the OVX group, BV/TV, Tb.Th and Tb.N were significantly decreased at all the lumbar over time (p<0.05). We also investigated a contrary tendency in Tb.Sp and SMI, compared to the above results in each group. A degree of alteration of mechanical characteristics in OVX group was decreased over measuring time (p<0.05). Bone quality presented by distribution of elastic modulus was improved in the Normal group more than OVX group. The findings of the present study indicated that both bone structure and quality of whole lumbar could be tracked and detected by analyzing the morphological and biomechanical characteristics of bones, based on a nondestructive method.

A Study on Chemical Characteristic of Electrically and Thermally Treated MPPF Capacitor Elements (MPPF 커패시터의 전기적, 열적 열화시 소체의 화학적특성에 관한 연구)

  • Koo, Kyo-Sun;Song, Hyun-Seok;Lee, Dong-Zoon;Kwak, Hee-Ro;Shong, Kil-Mok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.227-230
    • /
    • 2001
  • This paper divides the factors of an accident into two parts, that are electrical deterioration and thermal deterioration, to analyze a characteristic of the factor of an accident which can break out in the capacitor of metal vaporized polypropylene film. For the purpose of creating capacitor which is caused by electric deterioration, we applied DC overvoltage, induced self-healing and breakdown from element. We applied gradual heat to get an element which is cause by thermal deterioration. The chemical structure of the shape and surface is analyzed by thermogravimetric analyzer (TGA), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrometer(FT-IR). As a result, the peak of methylene group came out, in case of electrical deterioration, as observing the self-healing point. However, the peak is disappeared in the heat treated element by 500[$^{\circ}C$], and the peak of carbonyl group which has C=O came out in case of thermal deterioration.

  • PDF

Adaptive group of ink drop spread: a computer code to unfold neutron noise sources in reactor cores

  • Hosseini, Seyed Abolfazl;Afrakoti, Iman Esmaili Paeen
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1369-1378
    • /
    • 2017
  • The present paper reports the development of a computational code based on the Adaptive Group of Ink Drop Spread (AGIDS) for reconstruction of the neutron noise sources in reactor cores. AGIDS algorithm was developed as a fuzzy inference system based on the active learning method. The main idea of the active learning method is to break a multiple input-single output system into a single input-single output system. This leads to the ability to simulate a large system with high accuracy. In the present study, vibrating absorber-type neutron noise source in an International Atomic Energy Agency-two dimensional reactor core is considered in neutron noise calculation. The neutron noise distribution in the detectors was calculated using the Galerkin finite element method. Linear approximation of the shape function in each triangle element was used in the Galerkin finite element method. Both the real and imaginary parts of the calculated neutron distribution of the detectors were considered input data in the developed computational code based on AGIDS. The output of the computational code is the strength, frequency, and position (X and Y coordinates) of the neutron noise sources. The calculated fraction of variance unexplained error for output parameters including strength, frequency, and X and Y coordinates of the considered neutron noise sources were $0.002682{\sharp}/cm^3s$, 0.002682 Hz, and 0.004254 cm and 0.006140 cm, respectively.

Finite Element Analysis on the Motion Accuracy of Hydrostatic Table(1.st. Analysis and Experimental Verification on Single-side Table) (FEM을 이용한 유정압테이블의 운동정밀도 해서(1. 단면지지형 테이블의 해석 및 실험적 검증))

  • Park, Cheon-Hong;Jeong, Jae-Hun;Lee, Hu-Sang;Kim, Su-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.137-144
    • /
    • 2000
  • In order to achieve systematical method for improving motion accuracy of hydrostatic table, an algorithm using finite element method is proposed in this paper. Quantification of averaging effect of oil film on motion error is performed theoretically by analysis on the relationship between spacial frequency of rail form error and motion error of table. Influences of film stiffness and pocket size on the motion error of table are also analyzed theoretically. Validity of the algorithm is verified experimentally from the test on the motion error of table with three types of rail which have different form profile. Experimental results show that the algorithm is very effective to analyze theoretically the motion error of hydrostatic table.

  • PDF

An Analysis Code and a Planning Tool Based on a Key Element Index for Controlled Explosive Demolition

  • Isobe, Daigoro
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.243-254
    • /
    • 2014
  • In this study, a demolition analysis code using the adaptively shifted integration (ASI)-Gauss technique, which describes structural member fracture by shifting the numerical integration point to an appropriate position and simultaneously releasing the sectional forces in the element, is developed. The code was verified and validated by comparing the predicted results with those of several experiments. A demolition planning tool utilizing the concept of a key element index, which explicitly indicates the contribution of each structural column to the vertical load capacity of the structure, is also develped. Two methods of selecting specific columns to efficiently demolish the whole structure are demonstrated: selecting the columns from the largest index value and from the smallest index value. The demolition results are confirmed numerically by conducting collapse analyses using the ASI-Gauss technique. The numerical results suggest that to achieve a successful demolition, a group of columns with the largest key element index values should be selected when explosives are ignited in a simultaneous blast, whereas those with the smallest should be selected when explosives are ignited in a sequence, with a final blast set on a column with large index value.

ON FINITE GROUPS WITH A CERTAIN NUMBER OF CENTRALIZERS

  • REZA ASHRAFI ALI;TAERI BIJAN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.217-227
    • /
    • 2005
  • Let G be a finite group and $\#$Cent(G) denote the number of centralizers of its elements. G is called n-centralizer if $\#$Cent(G) = n, and primitive n-centralizer if $\#$Cent(G) = $\#$Cent($\frac{G}{Z(G)}$) = n. In this paper we investigate the structure of finite groups with at most 21 element centralizers. We prove that such a group is solvable and if G is a finite group such that G/Z(G)$\simeq$$A_5$, then $\#$Cent(G) = 22 or 32. Moreover, we prove that As is the only finite simple group with 22 centralizers. Therefore we obtain a characterization of As in terms of the number of centralizers