• Title/Summary/Keyword: Element Technology

Search Result 9,088, Processing Time 0.044 seconds

Studies on the Shape Optimization of Connecting Element for Hydro-Embedding (하이드로 임베딩시 체결용 연결요소의 형상 최적화 연구)

  • Kim B. J.;Kim D. K.;Kim D. J.;Moon Y. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.756-763
    • /
    • 2005
  • The applicability and productivity of hydroforming process can be increased by combining pre- and post-forming processes such as the bending, piercing and embedding process. For the fabrication of automotive parts, the hollow bodies with connecting nuts are widely used to connect parts together. Hollow body with connecting nuts has been conventionally fabricated by welding nuts or screwing in autobody screws. It requires multiple steps and devices fur the welding and/or screwing Therefore in this study, hydro-embedding process that combines the hydraulic embedding of connecting element(nut) with hydroforming process is investigated. Studies on the hydro-embedding technology have been performed to optimize the shape of the connecting element by analyzing the deformed mode of the embedded tube The effects of the shape of the screw tip, screw thread and shape of thread on the connection force between the tube and the connecting element have been investigated to optimize the shape of connecting element. Finite element analysis has also been performed to provide deformation behaviors of the tube surrounding a hole produced by hydro-embedding.

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

Frequency-Dependent Element Matrices for Vibration Analysis of Piping Systems (배영계의 진동해소를 위한 주파수종속 요표행렬)

  • 양보석;안영홍;최원호
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • This paper presents an approach for the derivation of frequency-dependent element matrices for vibration analysis of piping systems containing a moving medium. The dynamic stiffness matrix is deduced from transfer matrix, and, in turn, the frequency-dependent element matrices are derived. Numerical examples show that method gives more accurate results than those obtained using the conventional static shape function based element matrices.

  • PDF

A Novel Wound Rotor Type for Brushless Doubly Fed Induction Generator

  • Chen, Xin;Wang, Xuefan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.595-602
    • /
    • 2015
  • The rotor configuration of the brushless doubly fed induction generator (BDFIG) plays an important role in its performance. In order to make the magnetomotive force (MMF) space vector in one set rotor windings to couple both magnetic fields with different pole-pair and have low resistance and inductance, this paper presents a novel wound rotor type for BDFIG with low space harmonic contents. In accordance with the principles of slot MMF harmonics and unequal element coils, this novel rotor winding is designed to be composed of three-layer unequal-pitch unequal-turn coils. The optimal design process and rules are given in detail with an example. The performance of a 700kW 2/4 pole-pair prototype with the proposed wound rotor is analyzed by the finite element simulation and experimental test, which are also carried out to verify the effectiveness of the proposed wound rotor configuration.

Case Study of Shape Design of Load Cell Using Finite Element Method

  • Reaugkittakarn, Saravut;Sripituk, Jettiya;Pongswatd, Sawai;Pannil, Pittaya;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2054-2057
    • /
    • 2005
  • In this paper, the application of finite element method to design the shape of load cell as an illustrative case study is described. The relationship between the various shapes of load cell and their stress characteristic were analyzed by COSMOS simulation program. The results obtained from the proposed analysis can be applied to determine the appropriate position of strain gauges for good quality load cell. The experimental results show the good efficiency of the proposed technique.

  • PDF

Efficient Calculation of a Step Discontinuity for Planar Transmission Line Using Vector Finite Element Method and Mode Matching Method (벡터유한요소법과 모드정합법을 이용한 불연속 구조를 갖는 평면형 선로의 효율적 계산)

  • Kim, Young-Tae;Kim, Chul-Soo;Park, Jun-Seok;Ahn, Dal;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1817-1819
    • /
    • 2001
  • For an efficient calculation of scattering matrix of planar transmission line with step discontinuity. Mode Matching Method combined with Vector Finite Element Method is adopted. Calculating effective widths are replaced with their respective equivalent planar waveguide corresponding to the microstrip width, Propagation Constant is calculated from the Vector finite element. Mode matching method is used for deriving scattering parameters.

  • PDF

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis (대변형 유한요소해석을 위한 요소망 자동 생성기법)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

Contact Heat Transfer Coefficient for Finite Element Analysis in Warm Forging Processes (온간단조 공정의 계면열전달계수)

  • Kang J.H.;Ko B.H.;Jae J.S.;Kang S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.183-188
    • /
    • 2006
  • Heat transfer coefficients have great influence on finite element analysis results in elevated temperature forging processes. Experimentally calculated contact heat transfer coefficient is not suitable for one-time finite element analysis because analyzed temperature will be appeared to be too low. To get contact heat transfer coefficient for one-time finite element analysis, tool temperature in operation was measured with thermocouple and repeated finite element analysis was performed with experimentally calculated contact and cooling heat transfer coefficient. Surface temperature of active tool was obtained comparing measurement and analysis results. Contact heat transfer coefficient for one-time finite element analysis was achieved analyzing surface temperature between repeated finite element analysis and one-time finite element analysis results.

Development of a Rigid- Ended beam Element and a Simplified 3-Dimensional Analysis Method for Ship Structures

  • Seo, Seung-Il;Lim, Sung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.3
    • /
    • pp.13-24
    • /
    • 1999
  • In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane element. And also, the proposed simplified 3- dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the simplified 3-dimensional method is revealed to have good computing efficiency due to unnecessity of the elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF