• Title/Summary/Keyword: Element Design

Search Result 10,684, Processing Time 0.041 seconds

Abstraction of the Definition of Engineering Design Ability and its Subdivision and Element by the Survey of Experts' Recognition (전문가 인식 조사에 의한 공학 설계 능력의 정의 및 하위 영역과 요소 도출)

  • Kim, Taehoon
    • Journal of Engineering Education Research
    • /
    • v.18 no.3
    • /
    • pp.24-32
    • /
    • 2015
  • The purpose of this research is to consider theoretical points of view on a preceding research related to an engineering design and abstract the definition of engineering design ability, its subdivision and element on the basis of experts' recognition. To achieve this goal, various literature researches were carried out by examining domestic and foreign articles in journals, lots of dissertations, and books related to engineering design through theoretical consideration. And to secure the validity on the definition of engineering design ability, its subdivision and element through the theoretical study, a feasibility evaluation method by the experts was applied. And the feasibility evaluation of the experts was conducted through 2 stages. The major conclusions of this study are as follows. Firstly, based on the experts' recognition on the definition of engineering design ability, its subdivision and element, which were revised through the 1st feasibility evaluation and then utilized in the 2st one, the validity was confirmed, and the subdivisions of the engineering design ability were divided into 5 and the elements of the subdivision ability were 33. Secondly, the engineering design ability was defined as "the one to design a realizable product with consumers' demand fully satisfying, based on a knowledge application ability, thinking ability, communication ability, problem-solving ability, and teamwork ability to solve engineering problems." Thirdly, the subdivisions of the engineering design ability were divided as a knowledge application ability, thinking ability, communication ability, problem-solving ability, and teamwork ability.

Automated Modeling and Structure Analysis of Bellows (벨로우즈 자동 모델링과 구조해석)

  • Lee, Seungwoo;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.152-157
    • /
    • 2014
  • Pro-program function of Pro/E has been utilized to expedite the design process of bellows. Design parameters selected for bellows design are manipulated to obtain the shapes user specified. User-oriented function may automate the bellows design process and this function may enable to reduce the design time remarkably. Generated bellows solid model has been applied to study of design sensitivity and optimum design. Among the selected design parameters, thickness of bellows affects system response most. Control-ring installed bellows may reduce the stress and prove to be an effective element for heavy load. The finite element analysis results combined with 3D model generated by pro-program may provide the feasible design directions to the bellows designer.

Topology Optimization Using the Element Connectivity Parameterization Method in Three Dimensional Design Domain (3차원 설계 영역에서의 요소 연결 매개법을 이용한 위상 최적 설계)

  • Ho Yoon Gil;Young Kim Yoon;Soo Joung Yuung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.990-997
    • /
    • 2005
  • The objective of this paper is to present the element connectivity parameterization (ECP) fur three dimensional problems. In the ECP method, a continuum structure is viewed as discretized finite elements connected by zero-length elastic links whose stiffness values control the degree of inter-element connectivity. The ECP method can effectively avoid the formation of the low-density unstable elements. These elements appear when the standard element density method is used for geometrical nonlinear problems. In this paper, this ECP method developed fur two-dimensional problems is expanded to the design of three-dimensional geometrical nonlinear structures. Among others, the automatic procedure converting standard finite element models to the models suitable for the ECP approach is developed and applied for optimization problems defined on general three-dimensional design domains.

Finite Element Analysis for the Forging Process Design of a Blind Rivet (블라인드 리벳의 단조공정설계를 위한 유한요소해석)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2577-2582
    • /
    • 2009
  • A rivet which can fasten two parts is one of an important mechanical elements. In this study, the process design of a blind revet is implemented using finite element method in order to manufacture it which can resist high vibration and has strong coherence between two parts. Considering plastic flow, ease of manufacture, high strength, material loss, and so forth, an optimal four-stage process is proposed by finite element analysis and process design rules. In addition, the finite element simulation results such as shape of the forged rivet, strain distribution and forging load are investigated for the usefulness of the forging process of the blind rivet. These results will be contributed to the forging process design and the die design of the blind rivet.

Column design of cold-formed stainless steel slender circular hollow sections

  • Young, Ben;Ellobody, Ehab
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.285-302
    • /
    • 2006
  • This paper describes the design and behaviour of cold-formed stainless steel slender circular hollow section columns. The columns were compressed between fixed ends at different column lengths. The investigation focused on large diameter-to-plate thickness (D/t) ratio ranged from 100 to 200. An accurate finite element model has been developed. The initial local and overall geometric imperfections have been included in the finite element model. The material nonlinearity of the cold-formed stainless steel sections was incorporated in the model. The column strengths, load-shortening curves as well as failure modes were predicted using the finite element model. The nonlinear finite element model was verified against test results. An extensive parametric study was carried out to study the effects of cross-section geometries on the strength and behaviour of stainless steel slender circular hollow section columns with large D/t ratio. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel slender circular hollow section columns, while the American Specification is generally quite conservative. Therefore, design equation was proposed in this study.

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

Optimization of a Membrane with a Center Hole using Natural Element Method and Genetic Algorithm (자연요소법과 유전자 알고리듬을 사용한 원공 평판의 최적설계)

  • Lee, Sang-Bum;Seong, Hwal-Gyeng;Cheon, Ho-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • Natural element method (NEM) is quick in research activities by natural sciences and mechanical engineering fields, and from which good results are watched by various engineering fields and applied too. However no paper or research about the applied case has announced yet. Therefore on this paper, I will rediscover an optimum design and apply NEM into other fields with NEM for existing optimum design of mainly using FEM. NEM and genetic algorithm (GA) are applied to optimize a membrane with a center hole. The optimal design obtained by NEM is compared to the counterpart obtained by the finite element method (FEM). Result by NEM is found to be better than the result by FEM. NEM can be a feasible analysis tool in design optimization.

Development of Interface Between Optimization Solver and Commercial EM Software for Design of Electromagnetic Devices (상용 전자장 해석 프로그램 연동을 위한 전기기기 최적설계 인터페이스 개발)

  • Kim, Min-Ho;Byun, Jin-Kyu
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.45-48
    • /
    • 2009
  • In this paper, we use the optimization design theory based on the finite element method and implement the optimal design of electromagnetic devices using COMSOL interface. COMSOL is one of the commercial EM software. Shape information for the design optimization is extracted by CAD in EM software. To calculate the shape of optimal design, sensitive analysis is applied to the design processing in MATLAB. To achieve the design objective in this paper, objective function is defined. According to the sensitive analysis based on the finite element method, we change the design variable after the sensitivity of the objective function is computed. To verify the proposed method, the results are compared with the initial design.

  • PDF

Finite Element Analysis and Its Verification of Springback in L-bending to Evaluate the Effect of Process Design Parameters (L-벤딩에서 공정 설계변수가 스프링백에 미치는 영향의 평가를 위한 유한요소해석 및 검증)

  • Cho, M.J.;Kim, S.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • A parametric study was conducted on the effects of five fundamental design parameters on springback, including die clearance, step height, step width, punch radius, and taper relief in an L-bending process, controlled by the compression force. The experiment was also conducted to verify the usefulness of the parametric study procedure for process design, as well as the finite element predictions. The elastoplastic finite element method was utilized. The L-bending process of the york product, which is a key part of the breaker mechanism, was employed. The deformation of the material was assumed to be due to plane strain. Five samples of each design parameter were selected based on experiences in terms of process design. The finite element predictions were analyzed in detail to show a shortcut towards the process design improvement which can replace the traditional process design procedure relying on trial-and-errors. The improved process design was verified to meet all the requirements and the predictions and experiments were in good agreement.

A Study on the Expression Method and Characteristics of Ecology Design in Commercial Space (상업공간에서의 자연요소 표현방법 및 특성에 관한 연구)

  • Lee, Jin-Young;Seo, Ji-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.2
    • /
    • pp.186-193
    • /
    • 2013
  • In the commercial space, the modern consumers want to consume not only product but also culture. Thus, the modern commercial space tries to induce the customer's concern and purchase to the differentiated design. The introduction of this 'the natural element' delivers the pleasure and stability to the consumer buying process and availability is enlarged. Therefore, the purpose of study is gain that expression and characteristic method of the natural element in the commercial space. The detailed study method are as follows. First, the study looks into the natural element expression tendency in the modern space. Second, the expression type of the natural element was classified as 'Reappearance', 'Transformation', and 'Fuse' based on the preceding research. And according to the content of the expression type, subdivided method of 'Inclusion' and 'Replication' of 'Reappearance' and method of 'Imitation' and 'Association' of 'Transformation' and method of 'Juxtaposition' and 'Combine' of 'Fuse'. Third, the result of analyze the characteristic of expression of the natural element of the besides the commercial space case 20 place is as follows. First, 'Inclusion' of 'Reappearance' introduced the external scenery or planned garden as the inside through the opening. 'Replication' is used for decorative purposes or functional purposes as the natural element. 'Imitation' of 'Transformation' imitated the form, pattern, and color of the natural element and was mainly expressed in the wall and objet. The method of 'Association' expressed the concept of the natural element for the whole of the space and a portion of the wall and objet repetitively. As for 'Juxtaposition', mixture of 'Reappearance' had a good visual effect, because it can be obtained the external-internal nature. As for 'Combine', mixture of 'Replication' and 'Imitation' was the most common method. Thus, the study results are expected to be utilized as base date in designing the commercial with development of the natural element application method.