• Title/Summary/Keyword: Electrostatic interaction

Search Result 254, Processing Time 0.025 seconds

Cesium Adsorption Properties of Activated Carbon with Oxygen Functional Groups Introduced by Ozonation Treatment (오존 처리에 의해 산소 작용기가 도입된 활성탄소의 세슘 흡착 특성)

  • Eunseon Chae;Chung Gi Min;Chaehun Lim;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Cesium is a potential toxic contaminant due to its high solubility, which allows it to easily penetrate the human body and potentially induce cancer or DNA mutations. In this study, oxygen functional groups were introduced on activated carbons (ACs) by ozone treatment to enhance the cesium adsorption capacity. As the ozone treatment time increased, the oxygen content on the ACs surface increased. Subsequently, the electrostatic interaction between ACs and cesium enhanced, resulting in higher cesium ion adsorption efficiency across all samples. In particular, the sample treated with ozone for 7 minutes at an internal ozone concentration of 50000 ppm had roughly 12% greater oxygen functional group content and the highest cesium removal effectiveness (97.6%). Meanwhile, samples treated for 5 minutes showed a 0.3% cesium removal rate difference compared to those treated for 7 minutes, which was caused by the surface chemical similarity of the two samples due to the reactive characteristics of ozone gas. However, the cesium adsorption performance of ozonated activated carbon seems to be mainly influenced by the amount of oxygen functional groups introduced to the surface, although the specific surface area and pore structure of the activated carbon are also important.

Analysis of the Effects of Overexpression of Specific Phospholipid Binding Proteins on Cellular Morphological Changes in HEK293T Cells (특정 인지질 결합 단백질의 과발현이 HEK293 세포모양에 미치는 영향 분석)

  • Jun, Yong-Woo;Lee, Jin-A;Jang, Deok-Jin
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.875-880
    • /
    • 2016
  • The plasma membrane plays a crucial role in relaying signals from the outside environment to the inside of the cells. In eukaryotic cells, the inner leaflets of the plasma membrane are composed mostly of phospholipids, including phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositides (PIs). In this study, we tried to analyze the morphological changes induced by EGFP-fused membrane binding proteins, which are targeted to the plasma membrane via specific phospholipids binding. As a result, we found that overexpression of EGFP-P4M-SidM, a specific PI4P binding protein, or EGFP alone, did not induce any morphological changes. On the other hand, overexpression of EGFP-PLCδ1(PH), which is a specific PI(4,5)P2 binding protein, EGFP-AKT1(PH) which binds to PI(3,4,5)P3, or EGFP-OSH2(PH)×2 which binds to PI4P and PI(4,5)P2, could induce the filopodia and lamilapodia formation as well as cell shrinkage. Overexpression of Lact-C2-EGFP which is a specific PS-binding probe, EGFP fused Aplysia phosphodiesterase 4 (ApPDE4) long-form (L(N20)-EGFP) which is localized to the plasma membrane via hydrophobic interaction, or EGFP fused Aplysia PDE4 short-form (S(N-UCR1-2)-EGFP) which is localized to the plasma membrane via electrostatic interaction, could induce cell shrinkage, but not filopodia or lamilapodia formation. Taken together, our data support that the different phospholipid bindings in the plasma membrane could induce different characteristic morphological changes. Thus, we can analyze, characterize, and classify the cellular morphological changes induced by the various phospholipid binding proteins.

The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor (캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.313-325
    • /
    • 2007
  • In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

The Permeability of Capsule Type Fertilizer and Herbicide with Chitoasn and Alginic Acid (Chitosan과 Alginic Acid를 이용한 캡슐형 비료 및 제초제의 투과특성)

  • LEE Keun-Tai;KIM Sang-Moo;PARK Seong-Min;SON Byung-Yil;KIM Hyoung Seub;LEE Sang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.313-318
    • /
    • 1997
  • Effects of the concentration of NaCl, the concentration and the molecular weight of chitosan on the permeability of capsule type fertilizer and herbicide were investigated. The encapsulating process was based on the electrostatic interaction between chitosan (a polycationic polymer) and sodium alginate (an anionic polysaccharide). Sodium alginate solution $(1\%)$ was dropped into chitosan solution $(1\%)$ in which various amounts of NaCl was added. The capsule strength was increased with the addition of NaCl and the maximum value of capsule strength was observed at 0.3M NaCl. Capsule type fertilizer and herbicide were immersed in deionized water to determine its permeability, and it was affected by the concentration of NaCl and chitosan, and the molecular weight of chitosan. As the concentration of NaCl in chitosan solution increased, permeability of the capsule increased and marked the maximum value of $ 88\%$(fertilizer), $87\%$ (herbicide) at 0.75M NaCl. As concentration of chitosan solution increased, permeability tended to decreased; it showed the maximum value of $90\%$ (fertilizer) and $90.3\%$ (herbicide) at $0.25\%$ chitosan and the minimum value of $83\%$ (fertilizer) and $82\%$ (herbicide) at $1\%$ chitosan. Permeability of fertilizer and herbicide also decreased, as the molecular weight of chitosan (material of capsule) was decreased; it was showed $86\%$ (fertilizer) and $83\%$ (herbicide) at M.W 330,000 (sonication time 0min) and $52\%$ (fertilizer) and $51\%$ (herbicide) at M.W 119,000 (sonication time 180 min). The chitosan-alginic acid capsule was manufactured (defined as prepared capsule), dried for 6 hrs and immersed in deionized water (defined as restored capsule) to examine restoration of capsule. Restoration of capsule was good, and capsule strength was slightly decreased form $20g/cm^2$ (prepared capsule) to $17g/cm^2$ (restored capsule)

  • PDF