• 제목/요약/키워드: Electrostatic forces

검색결과 113건 처리시간 0.022초

정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석 (Response and Modal Analyses of Micro Double Cantilever Beams Interacted by Electrostatic Force)

  • 정강식;문승재;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.656-661
    • /
    • 2004
  • Static and dynamic responses of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

  • PDF

공압과 정전기력을 이용한 스프레이 박막 코팅 기술 개발 (Development of Spray Thin Film Coating Method using an Air Pressure and Electrostatic Force)

  • 김정수;김동수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.567-572
    • /
    • 2013
  • In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

릴레이 제어법을 이용한 유연 판상체의 정전부상에 관한 연구 (Electrostatic Suspension System of Flexible Objects using Relay Feedback Control)

  • 전종업;김선민
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.104-110
    • /
    • 2006
  • A design and control of electrostatic suspension system for flexible objects is presented. A number of electrode pairs of which the number depends on the object flexibility are positioned above the object and the voltages applied to each electrode pair are controlled, independently on the others, on the basis of the gap length. To implement the system with low cost and compactness, switched-voltage control scheme that is based on the relay feedback control is utilized. Relay feedback control method deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity and thus high voltage amplifiers that are costly and bulky are not needed any more. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping originating from the electrodes and levitated object. Employing fourteen electrode pairs, a thin aluminum plate with a thickness of 0.1 mm has been suspended at a gap length of 0.75mm.

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory

  • Jahangiri, Reza;Jahangiri, Hadi;Khezerloo, Hamed
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1541-1555
    • /
    • 2015
  • In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.

2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석 (Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes)

  • 오명훈;김재현;김현석;조선호
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.199-204
    • /
    • 2021
  • 본 논문에서는 정전기 흡착패드를 구성하는 곡면형 전극의 기하학적 엄밀성을 고려하기 위해 정전기 문제에 대하여 CAD에서 사용하는 NURBS 기저함수를 직접 사용하는 아이소-지오메트릭 해석 기법을 도입하였다. 정전기 흡착력을 곡선 접촉면에서 구하는데 법선 벡터의 영향이 크므로 엄밀한 기하형상을 고려하는 아이소-지오메트릭 해석이 강점을 갖는다. 수치 예제를 통해 곡면과 평면에서 반복 구조의 유무에 따른 파라메터 연구를 수행하여 곡면형 전극의 흡착력이 좋은 성능을 가짐을 보였다. 정전기 흡착력의 성분을 분석하였을 때 정전기 흡착력의 차이는 법선 성분 전기장의 증가로 인한 것으로 파악되었다. 결론적으로 곡면형 전극에서도 전극 사이 거리가 가까워지는 아래로 볼록인 경우가 가장 성능이 좋고, 위로 볼록인 경우에는 성능이 가장 낮음을 보였다.

전기장이 형성된 관성 충돌기에서 대전 입자의 거동과 부착 특성에 대한 연구 (Pre-Charged Particle Deposition in an Impactor subjected to an Electric Field)

  • 박형호;김상수
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.299-310
    • /
    • 1999
  • Effect of electrostatic and inertial forces on the pre-charged particle deposition was theoretically and experimentally studied by introducing the inertia impactor subjected to an electric field. To derive the analytic solution, we assumed that a flow was an ideal stagnation flow, a particle had saturation charges, and the electric field within the test section was uniform. On the other hand, $Al_2O_3$ particle groups were used as the test particles, which mean sizes were $1{\mu}m$, $3{\mu}m$, and $5{\mu}m$. To measure the deposition efficiency, the light scattering method was used. The results showed that the deposition efficiency was minimized at a certain nozzle velocity as increasing the nozzle velocity, only if the electric force was applied. As the electric field strength increased, $Stk_{50}{^{1/2}}$ was decreased, and its decreasing rate was reduced with increasing the flow velocity. Moreover the existence of electric field was against the cut-off performance of the inertia impactor.

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.

미세 물체 조작을 위한 3젓가락형 집게의 설계 및 제작 (Design and Fabrication of a 3 Chopstick Gripper for Microparts)

  • 박종규;문원규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1067-1071
    • /
    • 1997
  • A new type of gripper for micrometer-size objects is developed using piezoelectric multi-layer benders. It is composed of three chopsticks, two of which are designed to grip micro-objects. The third one is reserved for helping the two when objects are released from the chopsticks. It is well known that a micro object is much easier to grasp than to release it after holding it. The electrostatic force between the chopsticks and an object is believed to be the main cause of adhesion in a dry environment. The surface tension becomes very important when liquids are present or in a liquid. The third auxiliary chopsticks is introduced to solve there surface effects. All the three chopsticks are made of tungsten wires with sharpened ends by etching. When grasping microparts, the two chopsticks are utilized, and, when releasing them anywhere the parts are located, the third one reduces the electrostatic force between the objects and the chopstick may be to help the other two chopsticks to hold an objects in a desired orientation. We constructed the three chopstick gripoer for micro objects and test their function by holding and releasing an object of a diameter of 100 micrometers. We make use of open loop voltage control. The bender displacement resolution is sub-micrometer. The gripping forces, about tens of mN are obtained. The experiment shows that the third auxiliary chopstick functions effectively.

  • PDF

Self-assembly Coloration Approach on Cotton Fibers using Porphyrin

  • Kim, Byung-Soon;Li, Xiachuan;Kim, Sung-Hoon;Bae, Jin-Seo;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제20권5호
    • /
    • pp.23-27
    • /
    • 2008
  • In this work, poly(diallyldimethylammoniumchloride) (PDDAC) and meso-tetrakis(4-carboxyphenyl)porphyrin were considered to produce the self-assembly fabrication films. This method is based on the layer-by-layer (LbL) deposition produced by the electrostatic attraction between positively charged PDDAC and negatively charged porphyrin ions. The result of multilayer fabrication was discussed with the level of color strength (K/S). K/S spectra of the fabricated multilayer films showed gradual increase behaviors. In addition, the color photo images of the fabricated multilayer films showed that PDDAC and porphyrin were successfully attracted by electrostatic self-assembly forces.

적층 세라믹콘덴서 제조공정에서 $BaTiO_3$의 분산이 테이프캐스팅 성형체의 물성에 미치는 영향 (Effect of $BaTiO_3$ Dispersion on the Properties of Cast Tapes in Processing of Multilayer Ceramic Capacitor(MLCC))

  • 김봉호;김병관;김명호;백운규
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.214-222
    • /
    • 1996
  • The effect of physicochemical properties of organic solvent and dispersant among organic solvent dispersant binder and plasticizer which are used as processing additives in MLCC fabrication process on the dispersion of BaTiO3 was studied. The steric and electrostatic stabilization mechanisms in dispersion of BaTiO3 in organic media were evaluated respectively. The sttability of BaTiO3 achieved bysteric stabilization was dependent on the fraction of surface coverage of dispersant adsorption on BaTiO3. The electrostatic repulsive forces of BaTiO3 particles dispersed in orgainc media was found to be appreciabley great and dependent mainly on the kinds of organic solvent used. The mechanism affecting the stability of BaTiO3 was studied by the method of rheologi-cal behaviors of BaTiO3 suspension.

  • PDF