• Title/Summary/Keyword: Electrostatic current

Search Result 205, Processing Time 0.022 seconds

Effect of Relative Humidity, Disk Acceleration, and Rest Time on Tribocharge Build-up at a Slider-Disk Interface of HDD (HDD에서 상대습도, 디스크 가속도, 정지시간이 슬라이더-디스크 인터페이스의 마찰대전 발생에 미치는 영향)

  • Hwang J.;Lee D.Y.;Lee J.;Choa S.H.
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • In hard disk drives as the head to disk spacing continues to decrease to facilitate recording densities, slider disk interactions have become much more severe due to direct contact of head and disk surfaces in both start/stop and flying cases. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation and tribocharge build-up. The tribocharge build-up in the slider disk interface can cause ESD (electrostatic discharge) damage. In turn, ESD can cause severe melting damage to MR or GMR heads. The spindle speed of typical hard disk drives has increased in recent years from 5400 rpm to 15000 rpm and even higher speeds are anticipated in the near future. And the increasing disk velocity leads to increasing disk acceleration and this might affect the tribocharging phenomena of the slider/disk interface. We investigated the tribocurrent/voltage build-up generated in HDD, operating at increasing disk accelerations. In addition, we examined the effects with relative humidity conditions and rest time. We found that the tribocurrent/voltage was generated during pico-slider/disk interaction and its level was about $3\sim16pA$ and $0.1\sim0.3V$, respectively. Tribocurrent/voltage build-up was reduced with increasing disk acceleration. Higher humidity conditions $(75\sim80%)$ produced lower levels tribovoltage/current. Therefore, a higher tribocharge is expected at a lower disk acceleration and lower relative humidity condition. Rest time affected the charge build-up at the slider-disk interface. The degree of tribocharge build-up increased with increasing rest time.

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

In-situ Warpage Measurement Technique Using Impedance Variation (임피던스 변화를 이용한 실시간 기판 변형 측정)

  • Kim, Woo Jae;Shin, Gi Won;Kwon, Hee Tae;On, Bum Soo;Park, Yeon Su;Kim, Ji Hwan;Bang, In Young;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • The number of processes in the manufacture of semiconductors, displays and solar cells is increasing. And as the processes is performed, multiple layers of films and various patterns are formed on the wafer. At this time, substrate warpage occurs due to the difference in stress between each film and pattern formed on the wafer. the substrate warping phenomenon occurs due to the difference in stress between each film and pattern formed on the wafer. We developed a new warpage measurement method to measure wafer warpage during real-time processing. We performed an experiment to measure the presence and degree of warpage of the substrate in real time during the process by adding only measurement equipment for applying additional electrical signals to the existing ESC and detecting the change of the additional electric signal. The additional electrical measurement signal applied at this time is very small compared to the direct current (DC) power applied to the electrostatic chuck whit a frequency that is not generally used in the process can be selectively used. It was confirmed that the measurement of substrate warpage can be easily separated from other power sources without affecting.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Development of Radiation Free Soft X-Ray Ionizer with Ion Control (완전차폐 및 이온조절형 연X선식 정전기제거장치의 개발)

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.22-27
    • /
    • 2016
  • The Electrostatic Charge Prevention Technology is a core factor that highly influences the yield of Ultra High Resolution Flat Panel Display and high-integrated semiconductor manufacturing processes. The corona or x-ray ionizations are commonly used in order to eliminate static charges during manufacturing processes. To develop such a revolutionary x-ray ionizer that is free of x-ray radiation and has function to control the volume of ion formation simultaneously is a goal of this research and it absolutely overcomes the current risks of x-ray ionization. Under the International Commission on Radiological Protection, it must have a leakage radiation level that should be lower than a recommended level that is $1{\mu}Sv/hour$. In this research, the new generation of x-ray ionizer can easily control both the volume of ion formation and the leakage radiation level at the same time. In the research, the test constraints were set and the descriptions are as below; First, In order not to leak x-ray radiation while testing, the shielding box was fully installed around the test equipment area. Second, Implement the metallic Ring Electrode along a tube window and applied zero to ${\pm}8kV$ with respect to manage the positive and negative ions formation. Lastly, the ion duty ratio was able to be controlled in different test set-ups along with a free x-ray leakage through the metallic Ring Electrode. In the result of experiment, the maximum x-ray radiation leakage was $0.2{\mu}Sv/h$. These outcome is lower than the ICRP 103 recommended value, which is $1{\mu}Sv/h$. When applying voltage to the metallic ring electrode, the positive decay time was 2.18s at the distance of 300 mm and its slope was 0.272. In addition, the negative decay time was 2.1s at the distance of 300 mm and its slope was 0.262. At the distance of 200 mm, the positive decay time was 2.29s and its slope was 0.286. The negative decay time was 2.35s and its slope was 0.293. At the distance of 100 mm, the positive decay time was 2.71s and its slope was 0.338. The negative decay time was 3.07s and its slope was 0.383. According to these research, the observation was shown that these new concept of ionizer is able to minimize the leakage radiation level and to control the positive and negative ion duty ratio while ionization.

Electromagnetic Flapping Shutters for Phone Cameras (폰 카메라용 전자기력 Flapping 셔터)

  • Choi, Hyun-Young;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1385-1391
    • /
    • 2010
  • In this study, we present small-size, low-power, and high-speed electromagnetic flapping shutters for phone cameras. These shutters are composed of trapezoidal twin blades suspended by H-type torsional springs. The existing electrostatic rolling and flapping shutters need high input voltage, while the existing electromagnetic rotating shutters are too big to be used for phone cameras. To achieve low-power and high-speed angle motion for small-size electromagnetic flapping shutters for camera phones, low-inertia trapezoidal twin blades, each suspended by the low-stiffness H-type torsional springs, are employed. The electromagnetic flapping shutters used in this experimental study have steady-state rotational angles of $48.8{\pm}1.4^{\circ}$ and $64.4{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively, for an input current of 60 mA; the maximum overshoot angles are $80.2{\pm}3.5^{\circ}$ and $90.0{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively. The rising/settling times of the shutter while opening are 1.0 ms/20.0 ms, while those while closing are 1.7 ms/10.3 ms. Thus, we experimentally demonstrated that the smallsize (${\sim}8{\times}8{\times}2\;mm^3$), low-power (${\leq}60\;mA$), and high-speed (~1/370 s) electromagnetic flapping shutters are suitable for phone cameras.

Secondary Science Teachers' Perception about and Actual Use of Visual Representations in the Teaching of Electromagnetism (중등 전자기 수업에서 사용하는 시각적 표상에 대한 교사 인식 및 활용 실태)

  • Yoon, Hye-Gyoung;Jo, Kwanghee;Jho, Hunkoog
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.253-262
    • /
    • 2017
  • This study aims at investigating the perceptions of science teachers about the role of visual representations in the teaching of electromagnetism, and finding out how science teachers use visual representations in their teaching of electromagnetism and the difficulties they experience in dealing with those representations. A total of 121 science teachers responded to the online survey. The results showed that most of the teachers agreed to the significance of using visual representations in the classroom but regarded their role as means of simply delivering science knowledge rather than constructing or generating knowledge. For the three visual representations widely used in teaching of electromagnetism in secondary schools (electrostatic induction on electroscope, magnetic field around current carrying wire, structure and principle of electric motor), the teachers preferred teacher-centered use of visual representations rather than student-centered and teacher's construction of representations were the most frequent among four types of use; interpretation, construction, application, and evaluation. The difficulties of teaching with these three visual representations were categorized into several factors; teachers, students, the characteristics of the representations, and lack of resources and classroom environment. Teachers' limited perceptions about the role of visual representations were associated with the ways of using visual representations in their teaching. Implications for the effective use of visual representations for science learning and teaching were discussed.

Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

  • Wang, Wei;Xu, Hongsong;Huang, Zhicheng;Zhang, Lu;Wang, Huan;Jiang, Sitao;Xu, Min;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. It is revealed that hetero - material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ${\Phi}_{M1}/{\Phi}_{M2}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

Characterization of immobilized laccase and its catalytic activities (고정된 laccase의 특성 및 촉매효과)

  • Hyung Kyung Hee;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • Copper-containig enzyme, laccase (Rhus vernicifera) was immobilized onto gold electrode using self-assembly technique and its surface properties and catalytic activities were examined. Laccase is an oxidoreductase capable to oxidize diphenols or diamines by 4-electron reduction of molecular oxygen without superoxide or peroxide intermediates. The electrode surface were modified by $\beta-mercaptopropionate$ to have a net negative charge in neutral solution and positively charged laccase (pI=9) was immobilized by electrostatic interaction. The successful immobilization was confirmed by cyclic voltammograms which showed typical surface-confined shapes and behaviors. The amount of charge to reduce the surface was similar to the charge calculated assuming the surface being covered by monolayer. The activity of the immobilized enzyme was tested by the capbility of oxidizing a substrate, ABTS (2,2-azine-bis-(3-ethylbenzthioline-6-sulfonic acid) and it was maintained for $2\~3$ days at $4^{\circ}C$. The immobilzed laccase showed about $10\~15\%$ activity compared to that in solution. The laccase-modified electrode showed the activity of elefoocatalytic reduction of oxygen in the presence of mediator, $Fe(CN)_6^{3-}$ The addtion of azide which is an inhibitor of laccase compeletly eliminated the catalytic current.

Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst (벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.258-263
    • /
    • 2017
  • In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of $34.16{\mu}A/cm^2$, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of $0.91mW/cm^2$. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.