• Title/Summary/Keyword: Electrostatic Separation

Search Result 68, Processing Time 0.025 seconds

Physical Properties and Dyeability of Wool/Polyester Spun Blend Yarn and Its Fabrics Using Air Blowing and Electrostatic Spinning Technology(Cyclone) (공기분사 전기방적 기술(Cyclone)을 이용한 Wool/Polyester 혼섬사 소재의 물성 및 염색성)

  • Kim, Mikyung;Kim, Dongkwon;Jeong, Jaeseok;Jang, Bongsik
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.77-91
    • /
    • 2016
  • Recently, the spun blend yarns with staple fibers and filaments are being developed in the spinning process using an air blowing and electrostatic spinning technology(cyclone) in order to enhance the soft feeling and the fine count spun blend yarn manufacturing competitiveness. In this study, the appropriate separation condition of polyester multifilament was examined according to the treatment condition of conductive agents and voltage on polyester multifilament in the newly developed cyclone spinning process. And it was investigated the physical properties and dyeability of the cyclone wool/polyester spun blend yarns and its wool composite fabrics in comparison with existing sirofil wool/polyester spun blend yarn and its fabrics. As the result, it is determined that the newly developed cyclone wool/polyester spun blend yarn applied fabrics has a superior quality level in terms of practicality.

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho;Dong, Hyun-Bae;Choi, Ju-Young;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.567-572
    • /
    • 2009
  • In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.

A Study On The Control Techniques Of Electra-Static Discharges Using Semiconductor Circuits (반도체 회로를 이용한 정전기제거에 관한 연구)

  • Oh, H.J.;Park, K.J.;Kim, B.I.;Kim, N.O.;kim, H.G.;Kim, D.T.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.19-24
    • /
    • 2002
  • Static electricity is an everyday phenomenon. There can be few of us who have not experienced a static shock after sliding across a car seat. Other static nuisance effects include the cling of some fabrics to the body, the sticking of a plastic document cover, or the attraction of dust to a TV or computer screen. However, static electricity has been a serious industrial problem. The age of electronics brought with it new problems associated with static electricity and electrostatic discharge. And, as electronic devices became faster and smaller, their sensitivity to ESD increased. In this work, We are study on the control technique of electo-static discharges using semiconductor circuits. Our circuits are prevented well to electrostatic shock or damages from triboelectric charging in cars everyday life.

  • PDF

Salt Effect of Metal Ion Substituted Membranes for Water-Alcohol Systems Using Pervaporation Processes (투과증발공정을 이용한 물-알코올계에 대한 금속이온이 치환된 이온교환막의 염효과 연구)

  • 임지원;전지현
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2001
  • The hydorgen ions in PVA/SSA membranes were substituted with monovalent metal ions, $Li^{+}$, $Na^{+}$, $K^{+}$, divalent metal ion forms, $Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$, trivalent metal ion forms, $Al^{+}$. The effect of exchange with metal ions was investigated through the swelling measurement and pervaporative experiments for water-ethanol and water-methanol mixtures at various operating conditions. In addition, ESCA analysis was carried out to study the substitution of the metal ions in membranes. The swelling ratio decerased in the sequence of $Li^{+}$, $Na^{+}$, $K^{+}$ and this might be due to the 'salting-out` effect while the swelling ratios for divalnet and trivalent ion-substituted membranes were affected by the combined effect of salting-out, electrostatic crosslinking and extent of metal ion substitution. For the pervaporation performance, PVA/SSA-$H^{+}$membrane showed the lowest flux and highest separation factor for all aqueous ethanol solutions. The typical results of the flux, 59 g/$m^{2}$hr and the separation factor, 44 were obtained at $50^{\circ}C$ for 90% ethanol aqueous mixture. For water-methanol solutions, the PVA/SSA membranes substituted with monovalent PVA/SSA membranes substituted with divalent and tribalent metal ions, both `salting-out` and electrostatic effects affected the pervaporative results.

  • PDF

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Development of Material Separation Process for Recycling Waste Coffee Capsules (폐 커피 캡슐의 재활용을 위한 재질분리 공정 개발)

  • Baek, Sang-Ho;Han, Yosep;Kim, Seongmin;Davaadorj, Tsogchuluun;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.70-81
    • /
    • 2021
  • This study evaluated the recyclability of waste plastics in used coffee capsules disposed of as municipal waste. For recycling, a new material separation process was developed to remove the coffee grounds through primary crushing, washing, sieving, and secondary crushing, followed by corona discharge electrostatic separation. Furthermore, for the under 10 mm size fraction samples, the aluminum removal and the plastic recovery were 95.4% and 98.3%, respectively, under optimal conditions. In addition, for the 15 mm fraction samples, the aluminum removal and the plastic recovery were 91.3% and 97.2%, respectively. To evaluate the recyclability of the separated waste plastics, the samples were pelleted, and their material properties were analyzed. No hazardous substances were detected, and the results were similar to those for homo-PP. Therefore, it was confirmed tha t sufficient functiona lity existed a s recycled PP. However, owing to the da rk color of the pellets, limited applications to black or dark products are expected.

Low-voltage high-isolation RF MEMS switch based on a single crystalline silicon structure with fine gap vertical comb (미세 간극 수직 콤을 이용한 저 전압 고 격리도 단결정 RF MEMS 스위치)

  • Moon, Sung-Soo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.953-956
    • /
    • 2005
  • Low voltage actuation and high isolation characteristics are key features to be solved in electrostatic RF switch design. Since these parameters in the conventional parallel plate MEMS switch design are in trade-off relation, both requirements cannot be met simultaneously. In vertical comb design, however, the actuation voltage is independent to the vertical separation distance between the contact electrodes. Then, we can design the large separation distance between contact electrodes to get high isolation. We have designed an RF MEMS switch which has -40dB isolation at 5 GHz and 6 V operation voltages. The characteristics of the fabricated switch are being evaluate.

  • PDF

See-saw Type RF MEMS Switch with Narrow Gap Vertical Comb

  • Kang, Sung-Chan;Moon, Sung-Soo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the see-saw type RF MEMS switch based on a single crystalline silicon structure with narrow gap vertical comb. Low actuation voltage and high isolation are key features to be solved in electrostatic RF MEMS switch design. Since these parameters in conventional parallel plate RF MEMS switch designs are in trade-off relationship, both requirements cannot be met simultaneously. In the vertical comb design, however, the actuation voltage is independent of the vertical separation distance between the contact electrodes. Therefore, the large separation gap between contact electrodes is implemented to achieve high isolation. We have designed and fabricated RF MEMS switch which has 46dB isolation at 5GHz, 0.9dB insertion loss at 5GHz and 40V actuation voltage.

Triboelectrostatic Separation of Mixed Three Kinds of Plastics by a Two-stage Separation Process (2단계(段階) 분리공정(分離工程)에 의한 3종(種) 혼합(混合)플라스틱의 마찰하전(摩擦荷電) 정전선별(靜電選別))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.57-64
    • /
    • 2007
  • Triboelectrostatic separation of mixed three kinds of plastics, PVC, PET and PMMA, in the range of similar gravity has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET and PMMA. In the 1st stage using the PP cyclone charger, PVC grade and recovery depended considerably on the air velocity (10 m/s), the relative humidity (<30%), the electric field (>200 kV/m) and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At an optimum condition a PVC grade of 99.6% and a recovery of 97.5% was achieved. In the 2nd stage using the HIPS cyclone charger, a PMMA grade of 98.3% and a recovery of 97.0% was obtained under the conditions of 10m/s air velocity, over 250 kV/m electric field, central splitter position and less than 40% relative humidity.

Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane (다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구)

  • Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.