• Title/Summary/Keyword: Electrospray Ionization mass spectrometry

Search Result 266, Processing Time 0.028 seconds

Effects of Column Length and Particle Diameter on Phospholipid Analysis by Nanoflow Liquid Chromatography-Electrospray Ionization-Mass Spectrometry

  • Lee, Ju-Yong;Lim, Sang-Soo;Moon, Myeong-Hee
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.65-68
    • /
    • 2011
  • The effects of column length and particle size on the efficiency of separation and characterization of phospholipids (PLs) are investigated using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Since PLs are associated with cell proliferation, apoptosis, and signal transduction, it is of increasing interests in lipidomics to establish reliable analytical methods for the qualitative and quantitative profiling of PLs related to biomarker development in adult diseases. Due to the complexity of PLs, the preliminary separation of PLs is necessary prior to MS analysis. In this study, length of capillary column and the particle size of reversed phase ($C_{18}$) packing materials are varied to find a reliable condition for the high speed and high resolution separation using 8 PL standard mixtures. From experiments, it was found that a capillary column of nLC-ESI-MS-MS analysis for PL mixtures can be minimized to a 5 cm long pulled tip column packed with 3 ${\mu}m$ $C_{18}$ particles without losing resolution.

Discovery to Human Disease Research: Proteo-Metabolomics Analysis

  • Minjoong Joo;Jeong-Hun Mok;Van-An Duong;Jong-Moon Park;Hookeun Lee
    • Mass Spectrometry Letters
    • /
    • v.15 no.2
    • /
    • pp.69 -78
    • /
    • 2024
  • The advancement of high-throughput omics technologies and systems biology is essential for understanding complex biological mechanisms and diseases. The integration of proteomics and metabolomics provides comprehensive insights into cellular functions and disease pathology, driven by developments in mass spectrometry (MS) technologies, including electrospray ionization (ESI). These advancements are crucial for interpreting biological systems effectively. However, integrating these technologies poses challenges. Compared to genomic, proteomics and metabolomics have limitations in throughput, and data integration. This review examines developments in MS equipped electrospray ionization (ESI), and their importance in the effective interpretation of biological mechanisms. The review also discusses developments in sample preparation, such as Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX), analytical techniques, and data analysis, highlighting the application of these technologies in the study of cancer or Huntington's disease, underscoring the potential for personalized medicine and diagnostic accuracy. Efforts by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and integrative data analysis methods such as O2PLS and OnPLS extract statistical similarities between metabolomic and proteomic data. System modeling techniques that mathematically explain and predict system responses are also covered. This practical application also shows significant improvements in cancer research, diagnostic accuracy and therapeutic targeting for diseases like pancreatic ductal adenocarcinoma, non-small cell lung cancer, and Huntington's disease. These approaches enable researchers to develop standardized protocols, and interoperable software and databases, expanding multi-omics research application in clinical practice.

Development of a Four-way Interface for Online Capillary Isoelectric Focusing-Electrospray-Mass Spectrometry (CIEF-ESI-MS)

  • Yu, Hai Dong;Kim, Byungjoo;Shin, Dae-Ho;Ahn, Seonghee
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.83-86
    • /
    • 2013
  • A new interface for coupling CIEF and MS using a four-way cross has been developed in a single mechanical system. This new interface could be operated without the electric discontinuity and reinstallation of lines. Additionally, a bare fused silica capillary was facilitated as a spray needle to produce electrospray and to guide catholyte or sheath liquid. Focusing for CIEF was completed in a hanging droplet at the end of spray needle. This capillary spray needle also provided stable spray, enhanced the ionization efficiency and increased sensitivity. Results with carbonic anhydrase I showed that focusing and spraying were well completed with the new interface and the new spray needle.

Syringe Infusion-based Contactless Atmospheric Pressure Ionization Mass Spectrometry for Small and Large Biomolecules

  • Lo, Ta-Ju;Chang, Chia-Hsien;Chen, Yu-Chie
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • In this study, we explored a new approach for generating ions of organics and biomolecules using contactless atmospheric pressure ionization (C-API). That is, a tapered capillary (~20 cm) was connected to a syringe, which was coupled to a syringe pump for providing a given flow rate to introduce sample solution to the proximity of a mass spectrometer. The gas phase ions derived from analytes were readily formed in the capillary outlet, which was very close to the mass spectrometer (~1 mm). No external electric connection was applied on the capillary emitter. This setup is very simple, but it can function as an ion source. This approach can be readily used for the analysis of small molecules such as amino acids and large molecules such as peptides and proteins. The limit of the detection of this approach was estimated to be ~10 pM when using bradykinin as the sample. Thus, we believe that this approach should be very useful for being used as an alternative ion source because of its low cost, high sensitivity, simplicity, and ease of operation.

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

  • Roy, Swapan Kumar;Kim, Seongnyeon;Yoon, Jung H.;Yoon, Yong-Kyu;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its' application for characterizing biophysical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sample processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Study on Photodegradable Water-Soluble Compounds of Expanded Polystyrene

  • Lee, Seulgidaun;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.118-124
    • /
    • 2021
  • Many previous studies have focused on revealing the harmfulness of microplastic particles, whereas very few studies have focused on the effects of chemicals, particularly photooxidation product. In this study, products of photodegradation from expanded polystyrene (EPS), compounds produced by photolysis by ultraviolet (UV) light, were investigated. EPS was directly irradiated and photolyzed using a UV lamp, and then the extracted sample was analyzed using high-resolution mass spectrometry (HRMS). Multiple ionization techniques, including electrospray ionization, atmospheric pressure chemical ionization, and atmospheric pressure photoionization, were used. In total, >300 compounds were observed, among which polystyrene monomer, dimer, and oxidized products were observed. In this work, the data presented clearly demonstrate that it is necessary to identify and monitor oxidized plastic compounds and assess their effect on the environment.

Study of Complexes of C2- and C6-dihydroceramides with Transition Metal Ions Using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS)

  • Lim, Jin-Yi;Kumar, Avvaru Praveen;Kim, Chang-Dae;Ahn, Chul-Jin;Yoo, Young-Jae;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.397-401
    • /
    • 2009
  • The complexes of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have been investigated by using Electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The formation and fragmentation pathways of several doubly charged cluster ions as well as singly charged cluster ions of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have studied by ESI-MS/MS in the positive mode. Under ESI conditions, dihydroceramides form singly and doubly charged complexes with transition metal ions $(Mn^{2+},\;Fe^{2+},\;Co^{2+},\;Ni^{2+},\;and\;Zn^{2+}\;except\;Cu^{2+})$ with the compositions of $[DHCer+M+2H^2O-H]^+,\;[2DHCer+M+2H2O-H]^+,\;[3DHCer+M+2H2O-H]^+,\;[2DHCer+M]^{2+},\;[3DHCer+M]^{2+},\;[4DHCer+M]^{2+},\;[5DHCer+M]^{2+},\;and\;[6DHCer+M]^{2+}\;(DHCer\;=\;C_2-\;or\;C_6$-dihydroceramide, M = transition metal ion). The different complexation behavior of copper is responsible for relatively lower affinity of dihydroceramides to copper compared to those of other transition metals. It is also found that in the mass spectrum of the dihydroceramide complexes with copper(II), [2DHCer+Cu-H]$^+$ was observed with considerable intensity as well as [2DHCer+Cu+2$H_2O-H]^+$ due to its different geometry from those of other metals.

Analysis of Fatty Acyl Groups of Diacyl Galactolipid Molecular Species by HPLC/ESI-MS with In-source Fragmentation

  • Gil, Ji-Hye;Hong, Jong-Ki;Choe, Joong-Chul;Kim, Young-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1163-1168
    • /
    • 2003
  • The structures of molecular species of galactolipids, such as monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), isolated from wheat flour have been investigated using negative-ion electrospray ionization (ESI) mass spectrometry interfaced with high performance liquid chromatography (HPLC). According to the result of HPLC analysis, MGDG and DGDG were found to consist of mixtures of five and four molecular species, respectively. The galactolipids have been also analyzed to determine their fatty acid compositions, using HPLC/ESI-MS combined with in-source (or cone voltage) fragmentation. HPLC/ ESI-MS is very useful for one-step analysis of mixtures of galactolipids with a small sample quantity. Especially, the carboxylate anions produced in in-source fragmentations of the negative-ion of each component separated by HPLC provide valuable information on the composition of its fatty acyl chains.

Phospholipid Analysis by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

  • Moon, Myeong Hee
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Lipids play important roles in biological systems; they store energy, play a structural role in the cell membrane, and are involved in cell growth, signal transduction, and apoptosis. Phospholipids (PLs) in particular have received attention in the medical and lipidomics research fields because of their involvement in human diseases such as diabetes, obesity, atherosclerosis, and many cancers associated with lipid metabolic disorders. Here I review experimental strategies for PL analysis based on nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MSn). In particular, discussed are lipid extraction methods, nanoflow LC separation of PLs, effect of ionization modifiers on the ESI of PLs, influence of chain lengths and unsaturation degree of acyl chains of PLs on MS intensity, structural determination of the molecular structure of PLs and their oxidized products, and quantitative profiling of PLs from biological samples such as tissue, urine, and plasma in relation to cancer and coronary artery disease.