• Title/Summary/Keyword: Electrophilic center

Search Result 25, Processing Time 0.024 seconds

Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 3,4-Dinitrophenyl Diphenylphosphinothioate with Alkali Metal Ethoxides in Anhydrous Ethanol: Effect of Changing Electrophilic Center from P=O to P=S

  • An, Jun-Sung;NamKoong, Gil;Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2423-2427
    • /
    • 2011
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 3,4-dinitrophenyl diphenylphosphinothioate 9 with alkali metal ethoxides (EtOM, M = Li, Na, K) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOM] is linear for the reaction of 9 with EtOK. However, the plot curves downwardly for those with EtOLi and EtONa while it curves upwardly for the one with EtOK in the presence of 18-crown-6-ether (18C6). Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the reactivity increases in the order $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-}$ ${\approx}$ $k_{EtOK}$ < $k_{EtOK/18C6}$, indicating that the reaction is inhibited by $Li^+$ and $Na^+$ ions but is catalyzed by 18C6-crowned $K^+$ ion. The reactivity order found for the reactions of 9 contrasts to that reported previously for the corresponding reactions of 1, i.e., $k_{EtOLi}$ > $k_{EtONa}$ > $E_{EtOK}$ > $k_{EtO^-}$ ${\approx}$ $k_{EtOK/18C6}$, indicating that the effect of changing the electrophilic center from P=O to P=S on the role of $M^+$ ions is significant. A four-membered cyclic transition-state has been proposed to account for the $M^+$ ion effects found in this study, e.g., the polarizable sulfur atom of the P=S bond in 9 interacts strongly with the soft 18C6-crowned $K^+$ ion while it interacts weakly with the hard $Li^+$ and $Na^+$ ions.

A Kinetic Study on Michael-type Reactions of 1-(X-Substituted Phenyl)-2-propyn-1-ones with Amines: Effect of Amine Nature on Reactivity and Mechanism

  • Um, Ik-Hwan;Hwang, So-Jeong;Lee, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.767-771
    • /
    • 2008
  • Second-order rate constants have been measured spectrophotometrically for the Michael-type reaction of 1-(Xsubstituted phenyl)-2-propyn-1-ones (2a-f) with amines in $H_2O$ at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. A linear Brønsted-type plot is obtained with ${\beta}_{nuc}$ = 0.25 ${\pm}$ 0.02, a typical $\beta_{nuc}$ value for reactions which proceed through a stepwise mechanism with attack of amine on the electrophilic center being the rate-determining step. Secondary alicyclic amines are found to be more reactive than isobasic primary amines. The Hammett plot for the reactions of 2a-f with morpholine is not linear, i.e., the substrate with a strong electron-donating group (e.g., 4-MeO) exhibits a negative deviation from the Hammett plot. However, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ρ = 0.62 and r = 0.82. Thus, it has been proposed that the nonlinear Hammett plot is not due to a change in the ra te-determining step but due to ground-state stabilization through resonance interactions.

Synthesis of a Perfluoropolyether Intermediate via Electrophilic Fluorine-Substituting Direct Fluorination (친전자성 불소치환 직접플루오르화 반응에 의한 Perfluoropolyether 중간체의 합성)

  • Yun, Seok-Min;Lim, Jae-Won;Jeong, Eui-Gyung;Park, In-Jun;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.166-170
    • /
    • 2011
  • This study reported the synthesis of perfluoropolyether intermediate (TP-$COOCF_3$) having a $CF_3$ functional group via electrophilic fluorine substituting direct fluorination from PFPE intermediate (TP-$COOCH_3$) having a $CH_3$ functional group, which was synthesized by the ring opening polymerization and methyl esterification of HFPO. The effects of reaction conditions such as the amount of solvent, fluorine partial pressure, reaction time, were investigated. The results showed that the yield of fluorination reaction became the highest when the reaction was carried out in a mild condition for a long reaction time, which also minimized side reactions. The sample was characterized by FTIR and NMR, which confirmed the synthesis of the final product, TP-$COOCF_3$, via direct fluorination converting $CH_3$ of TP-$COOCH_3$ to $CF_3$ of TP-$COOCF_3$ with 95.4% yield.

Synthesis of L-3-[$^{123}I$]iodo-${\alpha}$-methyltyrosine and Biodistribution in 9L Glioma Bearing Rats (L-3-[$^{123}I$iodo-${\alpha}$-methyltyrosine 합성과 9L Glioma 이식 백서 분포조사)

  • Yang, Seung-Dae;Lim, Sang-Moo;Woo, Kwang-Sun;Chung, Wee-Sup;Chun, Kwon-Soo;Suh, Yong-Sup;Lim, Jong-Seok;Park, Hyon;Yun, Yong-Ki;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.105-109
    • /
    • 1995
  • L-3-[$^{123}I$]iodo-${\alpha}$-methyltyrosine([$^{123}I$] IMT) was synthesized by electrophilic radio-iodination using chloramine-T and Iodobead in phosphate buffered solution. And the biodistribution was examined in 9L glioma bearing rats. The radiosynthesis of [$^{123}I$]IMT with iodobead was simpler and higher in radiochemical yield(88%) than the method using chloramine-T(83%) as radioiodinating reagent. The highest yield was obtained from the reaction using 1 piece of Iodobead, $200{\mu}g$ ${\alpha}$-methyltyrosine in $100{\mu}l$ phosphate-buffered solution(pH 5.5) and the reaction was completed in 7min. 24 hours after the injection, the biodistribution in 9L glioma transplanted rats revealed the in vivo deiodination, the excretion via kidney, and 3 times higher uptake in the tumor than normal brain. These results suggest the promising clinical use of [$^{123}I$] IMT in the various malignancies.

  • PDF

Upregulation of Heme Oxygenase-1 as an Adaptive Mechanism against Acrolein in RAW 264.7 Macrophages

  • Lee, Nam-Ju;Lee, Seung-Eun;Park, Cheung-Seog;Ahn, Hyun-Jong;Ahn, Kyu-Jeung;Park, Yong-Seek
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.230-236
    • /
    • 2009
  • Acrolein, a known toxin in cigarette smoke, is the most abundant electrophilic $\alpha$, $\beta$-unsaturated aldehyde to which humans are exposed in a variety of environmental pollutants, and is also product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status plays a major role in the pathogenesis of various diseases such as diabetes, Alzheimer's and atherosclerosis. The findings reported here show that low concentrations of acrolein induce heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. HO-1 induction by acrolein and signal pathways was measured using reverse transcription-polymerase chain reaction, Western blot and immunofluorescence staining analyses. Inhibition of extracellular signal-regulated kinase activity significantly attenuated the induction of HO-1 protein by acrolein, while suppression of Jun N-terminal kinase and p38 activity did not affect induction of HO-1 expression. Moreover, rottlerin, an inhibitor of protein kinase $\delta$, suppressed the upregulation of HO-1 protein production, possibly involving the interaction of NF-E2-related factor 2 (Nrf2), which has a key role as a HO-1 transcription factor. Acrolein elevated the nuclear translocation of Nrf2 in nuclear extraction. The results suggest that RAW 264.7 may protect against acrolein-mediated cellular damage via the upregulation of HO-1, which is an adaptive response to oxidative stress.

Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S

  • Um, Ik-Hwan;Song, Yoon-Ju;Kim, Min-Young;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1525-1529
    • /
    • 2013
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the nucleophilic substitution reactions of 2-pyridyl thionobenzoate (5b) with alkali-metal ethoxides (EtOM, $M^+=Li^+$, $Na^+$, $K^+$, and 18-crown-6-ether complexed $K^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. $[EtOM]_o$ curve upward regardless of the nature of the $M^+$ ions, while those of $k_{obsd}/[EtO^-]_{eq}$ vs. $[EtO^-]_{eq}$ are linear with a positive intercept. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the ion-paired EtOM is more reactive than the dissociated $EtO^-$, and $M^+$ ions catalyze the reactions in the order $K^+$ < $Na^+$ < $Li^+$ < 18C6-complexed $K^+$. The plot of log $k_{EtOM}$ vs. $1/r_{Stokes}$ results in an excellent linear correlation, indicating that the reactions are catalyzed by the solvated $M^+$ ions but not by the bare $M^+$ ions. The reactions of 5b with EtOM have been concluded to proceed through a six-membered cyclic TS, in which the solvated $M^+$ ions increase the electrophilicity of the reaction center and the nucleofugality of the leaving group.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Cytotoxic Effect of Urushiol on Human Ovarian Cancer Cells

  • Choi, Ju-Youn;Park, Chang-Soo;Choi, Jong-Oh;Rhim, Hyang-Shuk;Chun, Heung-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.399-405
    • /
    • 2001
  • Urushiol, a natural pro-electrophilic quinone compound, has potential structural characteristics as antitumor chemotherapeutic agents. However, urushiol's use as an antitumor drug has some problems, because it is hardly miscible with an aqueous solution. Purified urushiol is highly viscous and soluble only in strong solvents. for this study, we prepared an urushiol-ethanol micro-emulsion with a unimodal size distribution by high-speed homogenization. This generated effective delivery of urushiol to its action wites, so that we could investigate its cytotoxic activity against cancer cells. Using a colony-forming assay, we were able to show that urushiol selectively inhibited the growth of the ovarian cancer cells PA-1 and 2774 at a concentration of $10^{-6}$, whereas it had only a negligible effect on normal CHO cells at the same concentration. The data suggest that urushiol may have potential as an effective antitumor agent in the treatment of ovarian cancer. In addition, we addressed the question of whether the specific cytotoxic effect of urushiol is linked to apoptosis, by DNA fragmentation and DAPI staining assays. The inhibitory effects of urushiol on the growth of ovarian cancer cells was found to be associated with DNA fragmentation and the fragmented nuclei formation, both of which represent markers for the induction of apoptosis. Therefore, the results suggested that urushiol affected its profound cytotoxicity by triggering apoptosis in ovarian cancer cells.

  • PDF

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Z-Substituted Phenoxides

  • Min, Se-Won;Seo, Jin-A;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2403-2407
    • /
    • 2009
  • Second-order rate constants have been measured for two series of nucleophilic displacement reactions, i.e., reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides and those of Y-substituted phenyl benzoates (1a-h) with 4-chlorophenoxide (4-ClPhO–) in 80 mol% $H_2O$/20 mol% DMSO at 25.0 ${\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot for reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.72. Reactions of 1a-h with 4-chlorophenoxide result in also a linear Br$\phi$nsted-type plot with ${\beta}_{lg}$ = –0.62, a typical ${\beta}_{lg}$ value for a concerted mechanism. The Hammett plots correlated with ${\sigma}^o\;and\;{\sigma}^-$ constants show many scattered points for reactions of 1a-h with 4-chlorophenoxide. In contrast, the corresponding Yukawa-Tsuno plot exhibits an excellent linear correlation with $\rho_Y$ = 2.26 and r = 0.53, indicating that expulsion of the leaving group occurs at the rate-determining step (RDS) either in a concerted mechanism or in a stepwise pathway. However, a stepwise mechanism with leaving group departure being the RDS is excluded since the leaving Y-substituted phenoxide is less basic and a better nucleofuge than the incoming 4-ClPh$O^-$. Thus, the reactions have been concluded to proceed through a concerted mechanism, in which bond formation between the nucleophile and electrophilic center is more advanced than expulsion of the leaving group in the transition state on the basis of the magnitude of ${\beta}_{nuc}\;and\;{\beta}_{lg}$ values.

Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won;Chuna, Sun-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1359-1363
    • /
    • 2008
  • Second-order rate constants have been determined spectrophotometrically for reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature, i.e., the slope decreases from 0.74 to 0.34 as the amine basicity increases. The $pK_a$ at the center of the Brønsted curvature, defined as $pK_a^o$, has been determined to be 9.1. Comparison of the Brønsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4-dinitrophenyl 2-furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than 1. The curved Brønsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 $\rightarrow$ 2) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the $k_2/k_{-1}$ ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, $k_1$ has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of 1, indicating that the C=O bond in the thiophenecarboxylate 2 is less electrophilic than that in the furoate 1. The smaller k1 for the reactions of 2 is fully responsible for the fact that 2 is less reactive than 1.