Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.10.2403

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Z-Substituted Phenoxides  

Min, Se-Won (Department of Chemistry and Nano Science, Ewha Womans University)
Seo, Jin-A (Department of Chemistry and Nano Science, Ewha Womans University)
Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Abstract
Second-order rate constants have been measured for two series of nucleophilic displacement reactions, i.e., reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides and those of Y-substituted phenyl benzoates (1a-h) with 4-chlorophenoxide (4-ClPhO–) in 80 mol% $H_2O$/20 mol% DMSO at 25.0 ${\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot for reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.72. Reactions of 1a-h with 4-chlorophenoxide result in also a linear Br$\phi$nsted-type plot with ${\beta}_{lg}$ = –0.62, a typical ${\beta}_{lg}$ value for a concerted mechanism. The Hammett plots correlated with ${\sigma}^o\;and\;{\sigma}^-$ constants show many scattered points for reactions of 1a-h with 4-chlorophenoxide. In contrast, the corresponding Yukawa-Tsuno plot exhibits an excellent linear correlation with $\rho_Y$ = 2.26 and r = 0.53, indicating that expulsion of the leaving group occurs at the rate-determining step (RDS) either in a concerted mechanism or in a stepwise pathway. However, a stepwise mechanism with leaving group departure being the RDS is excluded since the leaving Y-substituted phenoxide is less basic and a better nucleofuge than the incoming 4-ClPh$O^-$. Thus, the reactions have been concluded to proceed through a concerted mechanism, in which bond formation between the nucleophile and electrophilic center is more advanced than expulsion of the leaving group in the transition state on the basis of the magnitude of ${\beta}_{nuc}\;and\;{\beta}_{lg}$ values.
Keywords
Acyl-group transfer; Aryl benzoates; Br$\phi$nsted-type plot; Concerted mechanism; Yukawa-Tsuno plot;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Castro, E. A. Chem. Rev. 1999, 99, 3505-3524.   DOI   ScienceOn
2 Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 62-67.   DOI   ScienceOn
3 Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 555-561.   DOI   ScienceOn
4 Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 129-135.   DOI   ScienceOn
5 Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791.   DOI   ScienceOn
6 Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12-15.   DOI   ScienceOn
7 Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765-770.
8 Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610.   DOI   ScienceOn
9 Cook, R. D.; Rahhal-Arabi, L. Tetrahedron Lett. 1985, 26, 3147-3150.
10 Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153.   DOI   ScienceOn
11 Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821.   DOI   ScienceOn
12 Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197.   DOI   ScienceOn
13 Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720.   DOI   ScienceOn
14 Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985.   DOI   ScienceOn
15 Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry University Science Books: Sausalito, California, U. S. A., 2006; p 410.
16 Ul Hoque, M. E.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493-5499.   DOI   ScienceOn
17 Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703-7711.   DOI   ScienceOn
18 Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895.   DOI
19 Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 513-515.
20 Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330.   DOI   ScienceOn
21 Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543.   DOI   ScienceOn
22 Jencks, W. P. Chem. Rev. 1985, 85, 511-527.   DOI
23 Techniques of Organic Chemistry, Vol. 6, 4th Ed.; Bernasconi, C. F., Ed.; Wiley: New York, 1986.
24 Grunwald, E. J. Am. Chem. Soc. 1985, 107, 125-133.   DOI
25 Grunwald, E. J. Am. Chem. Soc. 1985, 107, 4710-4715.   DOI
26 Techniques of Organic Chemistry, Vol. 6, 3rd Ed.; Lewis, E. S., Ed.; Wiley: New York, 1974; Part 1.
27 Williams, A. Free Energy Relationships in Organic and Bio-Organic Chemistry; Royal Society of Chemistry: Cambridge, U. K., 2003; p 297.
28 Leffler, J. E.; Grunwald, E. Extrathermodynamic Free Energy Relationships, Rates and Equilibria of Organic Reactions; Wiley: New York, U. S. A., 1963; Chapter 7.
29 Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, U. S. A., 1969; p 193-199.
30 Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielianm, O. V. Can. J. Chem. 1986, 64, 213-219.   DOI
31 Haake, P.; McCoy, D. R.; Okamura, W.; Alpha, S. R.; Wong, S. Y.; Tyssee,D. A.; McNeal, J. P.; Cook, R. D. Tetrahedron Lett. 1968, 9, 5243-5246.   DOI   ScienceOn
32 Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970.   DOI
33 Wallerberg, G.; Haake, P. J. Org. Chem. 1981, 46, 43-46.   DOI
34 Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078.   DOI   ScienceOn
35 Im, L. R.; Park, Y. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 2477-2481.   DOI   ScienceOn
36 Carrol, F. A. Perspectives in Structures and Mechanism in Organic Chemistry; Brook/Cole: New York, 1998; p 371-380.
37 Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd Ed.; Harper Collins Publishers: New York, 1987; p 143-151
38 Advances in Linear Free-Energy Relationships; Chapman, N. B., Ed.; Plenum: London, 1972.
39 Younker, J. M.; Hengge, A. C. J. Org. Chem. 2004, 69, 9043-9048.   DOI   ScienceOn
40 Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244.   DOI   ScienceOn
41 Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370.   DOI   ScienceOn
42 Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942.   DOI   ScienceOn
43 Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666.   DOI   ScienceOn
44 Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480.   DOI   ScienceOn
45 Tsuno, Y.; Fujio, M. Adv. Phy. Org. Chem. 1999, 32, 267-385.   DOI   ScienceOn
46 Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139.   DOI   ScienceOn
47 Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637.   DOI
48 Williams, A. Adv. Phys. Org. Chem. 1992, 27, 1-55.
49 Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, U. S. A., 1969; p 480-483.
50 Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375.   DOI
51 Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970.   DOI
52 Page, M.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U. K., 1997; Chapter 7.
53 Chrystiuk, E.; Williams, A. J. Am. Chem. Soc. 1987, 109, 3040-3046.   DOI
54 Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629.   DOI   ScienceOn
55 Castro, E. A.; Bessolo, J.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161.   DOI   ScienceOn
56 Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430.   DOI   ScienceOn
57 Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284.   DOI   ScienceOn
58 Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803.   DOI   ScienceOn
59 Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536.   DOI   ScienceOn
60 Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404.   DOI   ScienceOn
61 Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243.   DOI   ScienceOn
62 Williams, A. Acc. Chem. Res. 1989, 22, 387-392.   DOI
63 Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647-2652.   DOI
64 Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368.   DOI
65 Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975.   DOI
66 Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915-920.   DOI   ScienceOn