• Title/Summary/Keyword: Electronic load controller

Search Result 172, Processing Time 0.024 seconds

A Study On the Characteristics of Cascaded PWM Converter for IUT (IT기반 지능형 다기능 변압기용 cascade형 PWM 컨버터의 특성 연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • In this paper, novel PWM generation method for cascaded H-bridge PWM converter is proposed. The proposed method can solve the unvalancing problem between H-bridges which consist cascade PWM converter without any injection of redundancy switching pattern for solving the load of switches forced from voltage reference of controller.

Design of Voltage Controller of DVR based on DSP (DSP를 기반으로한 DVR의 전압제어기 구현)

  • Lee won-sun;Kim soo-gon;Lim Byung-Kuk;Jeon hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.566-569
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic devices sensitive to power quality has caused many power quality problems. Recently, in power system, not only the reliability of the power supply but also the DVR(Dynamic Voltage Restorer) are being studied more and more. The DVR is a series compensator which can instantaneously compensate a voltage variation in supply side, and is a more effective than a existing UPS(Uninterruptible Power Supply) which can be only used in limited range of loads such as single load. Hence, in this paper, a study of inverter side L-C filter output Voltage for DVR is discussed.

  • PDF

A Application Method of Engine-Generator Power System in Ambulance (긴급 구난차량의 발전시스템에 관한 연구)

  • Jung, Won-Seok;Lee, Bong-Seok;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • Recently, the electric device has been launching owing to the development of industry. That development also can maximize the efficiency of generator. The emergency rescue vehicle operation differs from ordinary vehicles in engine life and usage distances. For the application of this system, this research proposes the ways to operate the emergency rescue vehicle operations more efficiently. Currently, many power systems, especially motors, developed with a large output of power. It is possible to produce electricity in the engine room with enough space and to operate all equipment within the rating load capacity.

Decoupling Control Design for Variable Speed Refrigeration System of a Ship

  • Hua, Li;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.808-815
    • /
    • 2006
  • In this paper, we suggest decoupling control method based on general PI control law to control variable speed refrigeration system of the ship effectively. In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. Thus, we propose decoupling model to eliminate the interfering loop between capacity and superheat at first. Next, we design PI controller to control capacity and superheat independently and simultaneously. Finally the control performance was investigated through some experiments. The experimental results show that the PI control design can obtain good control performance under the adjustable control reference and thermal load variation.

High Efficient Control Design for Refrigeration System of a Ship

  • Hua, Li
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.241-244
    • /
    • 2006
  • In this paper, we suggest the high efficient control method based on general PI control law to control the refrigeration system of the ship effectively. In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. Thus, we propose decoupling model to eliminate the interfering at first. Next, we design PI controller to control capacity and superheat independently. Finally the control performance was investigated through some experiments. The experiments results show that the PI control design can obtain good control performance deal with the varied control reference and thermal load.

  • PDF

Adaptive Input-Output Control of Induction Motor with Magnetic Saturation (자기포화를 갖는 인덕션 모터의 적응 입출력 선형화제어)

  • Lee, Min-Jae;Hwang, Young-Ho;Kim, Do-Woo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.325-328
    • /
    • 2002
  • In this paper, we proposed that the problem of controlling induction motor with magnetic saturation is studied from an input-output feedback linearization with adaptive algorithm. The $\pi$-model of induction motor is considered. An adaptive input-output feedback linearizing controller is considered under the assumption of known motor parameters and unknown load torque. Simulation results are provided for illustration.

  • PDF

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Hierarchical Power Management Architecture and Optimal Local Control Policy for Energy Efficient Networks

  • Wei, Yifei;Wang, Xiaojun;Fialho, Leonardo;Bruschi, Roberto;Ormond, Olga;Collier, Martin
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.540-550
    • /
    • 2016
  • Since energy efficiency has become a significant concern for network infrastructure, next-generation network devices are expected to have embedded advanced power management capabilities. However, how to effectively exploit the green capabilities is still a big challenge, especially given the high heterogeneity of devices and their internal architectures. In this paper, we introduce a hierarchical power management architecture (HPMA) which represents physical components whose power can be monitored and controlled at various levels of a device as entities. We use energy aware state (EAS) as the power management setting mode of each device entity. The power policy controller is capable of getting information on how many EASes of the entity are manageable inside a device, and setting a certain EAS configuration for the entity. We propose the optimal local control policy which aims to minimize the router power consumption while meeting the performance constraints. A first-order Markov chain is used to model the statistical features of the network traffic load. The dynamic EAS configuration problem is formulated as a Markov decision process and solved using a dynamic programming algorithm. In addition, we demonstrate a reference implementation of the HPMA and EAS concept in a NetFPGA frequency scaled router which has the ability of toggling among five operating frequency options and/or turning off unused Ethernet ports.

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.