• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.036 seconds

A Study on the Health Changes of Students in Long-Term Online Classes due to COVID-19

  • Seon Ahr Cho;Hong Chul Chae;Jun Sik Min;Seong Jae Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2023
  • The COVID-19 pandemic has had a significant impact on the educational landscape for students across the globe, leading to a shift towards long-term online learning. This study aims to examine the changes in the health status of college and university students before and after the transition to online classes. We conducted a survey questionnaire among 200 students enrolled at K University in Gangwon-do, including participants from both the Department of Visual Optics and the Department of Physical Therapy. The survey employed a 5-point Likert scale to evaluate a range of health-related factors, including physical and mental well-being, alterations in lifestyle, and academic performance. Both male and female students experienced a decline in physical strength and exercise during the online class period, while mental health and overall happiness showed improvement, particularly among female students. Notable shifts in lifestyle emerged, including an increased usage of electronic devices and enhanced familial connections. The study also shed light on intriguing trends related to academic accomplishments and adherence to official quarantine guidelines. In sum, the findings of this study offer valuable foundational information for the maintenance of students' well-being during online learning, as well as the development of effective strategies for online education in future academic settings.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

Research Trend of Topological Insulator Materials and Devices (위상절연체 소재 및 소자 기술 개발 동향)

  • W.J. Lee;T.H. Hwang;D.H. Cho;Y.D. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Topological insulators (TIs) emerge as one of the most fascinating and amazing material in physics and electronics. TIs intrinsically possess both gapless conducting surface and insulating internal properties, instead of being only one property such as conducting, semiconducting, and insulating. The conducting surface state of TIs is the consequence of band inversion induced by strong spin-orbit coupling. Combined with broken inversion symmetry, the surface electronic band structure consists of spin helical Dirac cone, which allows spin of carriers governed by the direction of its momentum, and prohibits backscattering of the carriers. It is called by topological surface states (TSS). In this paper, we investigated the TIs materials and their unique properties and denoted the fabrication method of TIs such as deposition and exfoliation techniques. Since it is hard to observe the TSS, we introduced several specialized analysis tools such as angle-resolved photoemission spectroscopy, spin-momentum locking, and weak antilocalization. Finally, we reviewed the various fields to utilize the unique properties of TIs and summarized research trends of their applications.

Squib Ignition and Status Check Circuits Design for Compact Embedded Systems in Guided Missiles (유도무기의 소형 임베디드 시스템을 위한 스퀴브 착화 및 상태 점검회로 설계)

  • Wonsop Kim;Keehyun Ahn;Minseok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • In the recent defence industries, it is required to develop the small and low cost embedded systems for guided missiles. According to the characteristics of guided missiles, the mission is conducted with multiple phases, which include a squib activation phase. By considering the unexpected squib activation, the squib system should be disabled after the launch of a guided missile. Therefore, the squib system needs to include the functions of the safe ignition and status check. This paper presents the squib ignition and status check circuits design for the compact embedded systems in guided missiles. Validation results show that for the functions of the squib ignition and status check, the presented circuits design performs well. The designed circuits also were implemented with various electronic devices and validated by the ground and flight tests.

Development of Export Volume and Export Amount Prediction Models Based on Supervised Learning (지도학습 기반 수출물량 및 수출금액 예측 모델 개발)

  • Dong-Gil Na;Yeong-Woong Yu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.152-159
    • /
    • 2023
  • Due to COVID-19, changes in consumption trends are taking place in the distribution sector, such as an increase in non-face-to-face consumption and a rapid growth in the online shopping market. However, it is difficult for small and medium-sized export sellers to obtain forecast information on the export market by country, compared to large distributors who can easily build a global sales network. This study is about the prediction of export amount and export volume by country and item for market information analysis of small and medium export sellers. A prediction model was developed using Lasso, XGBoost, and MLP models based on supervised learning and deep learning, and export trends for clothing, cosmetics, and household electronic devices were predicted for Korea's major export countries, the United States, China, and Vietnam. As a result of the prediction, the performance of MAE and RMSE for the Lasso model was excellent, and based on the development results, a market analysis system for small and medium sellers was developed.

Planning of Various Storytelling Virtual Reality Game Contents for Brain Enhancement (두뇌증진을 위한 다양한 스토리텔링 가상현실 게임 콘텐츠 기획)

  • Jin, Hwa-su;Song, Eun-jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.323-325
    • /
    • 2021
  • With the recent revitalization of virtual reality and game industries, digital therapeutics for medical purposes are emerging. Digital therapeutics refer to sports-based therapeutics such as virtual reality contents and games that are effective in preventing, managing, and treating diseases, not drugs. Through this study, we plan and develop contents for healing and brain enhancement using virtual reality technology as a therapeutic digital therapy. Through this, it can help to improve the brain of children who are dependent on electronic devices in the digital age and rarely use their brains.

  • PDF

Tailoring Surface Properties of Polyimides by Laser Direct Patterning (레이저 직접 패터닝에 의한 폴리이미드의 표면 특성 제어)

  • Yun Chan Hwang;Jeong Min Sohn;Jae Hui Park;Ki-Ho Nam
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, a comprehensive investigation was conducted on the morphological and property changes of laser-induced nanocarbon (LINC) as a function of laser process parameters. LINC was formed on the surfaces of polyimide films with different backbone structures under various process conditions, including laser power, scan speed, and resolution. Three different forms of LINC electrodes (i.e., continuous 3D porous graphene, wooly nanocarbon fibers, line cut) were formed depending on the laser power and scan speed. Furthermore, heteroatom doping induced from the chemical structure of the polyimide during laser patterning was found to be effective in modifying the electrical properties of LINC electrodes. The LINC surfaces exhibited different microstructures depending on the laser beam resolution under constant laser power and scan speed, allowing for controllable surface wettability. The correlation between the chemical structure of the polymer substrate, laser process parameters, and carbonized surface properties in this study is expected to be utilized as fundamental understanding for the manufacturing of next-generation carbon-based electronic devices.

Enhancement of Iris Masking Security using DNN and Blurring (DNN과 블러링을 활용한 홍채 마스킹 보안 강화 기술)

  • Seungmin Baek;Younghae Choi;Chanwoo Hong;Wonhyung Park
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.141-146
    • /
    • 2022
  • The iris, a biometric information, is safe, unique, and reliable, such as fingerprints, and is personal information that can significantly lower the misrecognition rate than other biometric authentication. However, due to the nature of biometric authentication, it is impossible to replace it if it is stolen. There is a case in which an actual iris photo is taken and 3d printed so that the eyes work as if they were in front of the camera. As such, there is a possibility of iris leakage through high-definition images and photos. In this paper, we propose to improve iris masking performance by supplementing iris region masking research based on existing blurring techniques. Based on the results derived in this study, it is expected that it can be used for the security of video conference programs and electronic devices.

Design of Short Messaging Service based Public Address System for Industrial Architectures over Wireless Networks

  • Caytiles, Ronnie D.;Park, Byungjoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.15-27
    • /
    • 2019
  • This paper deals with a web-based public address system for conveying information for different institutions. An architecture for a Short Messaging Service (SMS) based public address (PA) system that can be programmed by an authorized mobile phone or device is proposed. This PA system will facilitate information transfer from heads of offices, managers, directors, and deans of the institutions to its constituents or unit area as well as enable postings of information with proper authentication and validation remotely. The system supports high priority messaging, allowing the conveyance of critical and time sensitive information. The mobility management support for the PA system will be based on the Hierarchical Mobile Internet Protocol version 6 (HMIPv6), hence, allowing for a seamless connectivity to the system. The major advantage of this proposed PA system as compared with the traditional electronic displays and bulletin boards is seamless mobility wherein the display devices can be programmed remotely by heads of the institutions and business organization. It also allows faster communication and immediate actions concerning the different institutions, organizations, and businesses, thus, ensuring high productivity.