• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.034 seconds

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Active Authentication Method using NFC (NFC를 활용한 능동형 인증 방법)

  • Lee, Min-Gu;Kim, Dong-Wan;Sohn, Jin-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.140-156
    • /
    • 2012
  • Since most of recently launched smart devices support NFC(Near Field Communication), RFID applications are tend to be replaced. For instance, previous RFID application areas such as entrance control, mobile e-ticket, electronic payment and et. al are subject to change using NFC. Due to the limitation of passive communication in RFID, it is impossible to cover all security requirements of authentication and authorization mechanism that wide areas of applications demand. Therefore authentication and authorization mechanism based on NFC is very attractive to such applications because active communication methods make it possible to be highly secure in authentication and authorization. In this paper, authors propose a new approach of secure authentication and authorization mechanism using NFC smart devices based on EAP(Extensible Authentication Protocol) and AAA(Authentication, Authorization and Accounting) protocols.

Interference Avoidance Based on IEEE 802.15.4 MAC Layer between Heterogeneous Unlicensed Devices (IEEE 802.15.4 MAC 계층 기반의 이기종 비면허 기기 간 주파수 간섭 회피 방법)

  • Jang, Byung-Jun;Kim, Seok-Hwan;Yoon, Hyungoo;Choi, Sunwoong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2014
  • In order for heterogeneous unlicensed devices to co-exist on the same frequency band, the frequency interference avoidance mechanism is necessary. In this paper, a frequency interference between WLAN and WPAN systems that operate at 2.4 GHz ISM band was analyzed in the MAC layer. We observed that WPAN systems suffer from severe interference from WLAN systems. To avoid this interference problem, we propose a new channel shift algorithm for WPAN systems. We showed that the proposed channel shift algorithm is better than the traditional WPAN system which uses a fixed channel in terms of throughput.

Embedded Inductors in MCM-D for RF Appliction (RF용 MCM-D 기판 내장형 인덕터)

  • 주철원;박성수;백규하;이희태;김성진;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.31-36
    • /
    • 2000
  • We developed embedded inductors in MCM-D substrate for RF applications. The increasing demand for high density packaging was the driving forces to the development of MCM-D technology. Most of these development efforts have been focused on high performance digital circuits. However, recently there is a great need fur mixed mode circuits with a combination of digital, analog and microwave devices. Mixed mode modules often have a large number of passive components that are connected to a small number of active devices. Integration of passive components into the high density MCM substrate becomes desirable to further reduce cost, size, and weight of electronic systems while improving their performance and reliability. The proposed MCM-D substrate was based on Cu/photosensitive BCB multilayer and Ti/Cu is used to form the interconnect layer. Seed metal was formed with 1000 $\AA$ Ti/3000 $\AA$ Cu by sputtering method and main metal was formed with 3 $\mu\textrm{m}$ Cu by electrical plating method. The multi-turn sprial inductors were designed in coplanar fashion. This paper describe the manufacturing process of integrated inductors in MCM-D substrate and the results of electrical performance test.

  • PDF

OVERVIEW OF SUPERCONDUCTING MAGNET POWER SUPPLY SYSTEM FOR THE KSTAR 1ST PLASMA EXPERIMENT

  • Choi, Jae-Hoon;Yang, Hyung-Lyeol;Ahn, Hyun-Sik;Jang, Gye-Yong;Lee, Dong-Keun;Kim, Kuk-Hee;Hahn, Sang-Hee;Kim, Chang-Hwan;Hong, Jae-Sic;Chu, Yong;Kong, Jong-Dae;Hong, Seong-Lok;Hwang, In-Sung
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.459-466
    • /
    • 2008
  • The KSTAR Magnet Power Supply (MPS) was dedicated to the SC coil commissioning and $1^{st}$ plasma experiment as a part of the system commissioning. Although many efforts to develop large-current power supplies that are useful for high power electronic devices have been made in various application fields, such as for large metal-plating devices, there were clear discrepancies between conventional power supply technologies and that for the SC coils due to the special SC coil load conditions. Therefore, most of the power supply technologies for the SC coils were a challenge in the domestic research area due to their limited application. However, the MPS commissioning result showed that all of the hardware and controlling software operated well, and this result finally led to the success of SC coil commissioning and the KSTAR $1^{st}$ plasma experiment. This paper will describe key features of KSTAR MPS for the $1^{st}$ plasma experiment, and will also report the commissioning results of the magnet power supplies.

A Study on the Reliability Prediction about ECM of Packaging Substrate PCB by Using Accelerated Life Test (가속수명시험을 이용한 Packaging Substrate PCB의 ECM에 대한 신뢰성 예측에 관한 연구)

  • Kang, Dae-Joong;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, $20/20{\mu}m$ pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.

Reflection-type Finger Vein Recognition for Mobile Applications

  • Zhang, Congcong;Liu, Zhi;Liu, Yi;Su, Fangqi;Chang, Jun;Zhou, Yiran;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.467-476
    • /
    • 2015
  • Finger vein recognition, which is a promising biometric method for identity authentication, has attracted significant attention. Considerable research focuses on transmission-type finger vein recognition, but this type of authentication is difficult to implement in mobile consumer devices. Therefore, reflection-type finger vein recognition should be developed. In the reflection-type vein recognition field, the majority of researchers concentrate on palm and palm dorsa patterns, and only a few pay attention to reflection-type finger vein recognition. Thus, this paper presents reflection-type finger vein recognition for biometric application that can be integrated into mobile consumer devices. A database is built to test the proposed algorithm. A novel method of region-of-interest localization for a finger vein image is introduced, and a scheme for effectively extracting finger vein features is proposed. Experiments demonstrate the feasibility of reflection-type finger vein recognition.

Design and Implementation of Wireless Protocol for Managing Rooms in a Large Building (대형 건물 객실 관리를 위한 무선 프로토콜 설계 및 구현)

  • Jeong, Woo-Jeong;Choi, Sung-Chul;Jeong, Kyu-Seuck;Kim, Jong-Heon;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2010
  • In wireless networks environment, there are attempts for constructing systems through which we can monitor and control various electronic devices used in large buildings at remoteness by using Zigbee protocol. Since address assignment method of DAA in Zigbee has a depth restriction, we cannot construct a network in large buildings. And also communication failures are frequent in a large network since broadcast storm can be occurred due to frequent broadcasts among a lot of nodes at AODV routing used in Zigbee. In order to solve these problems, in this paper, we propose a novel protocol which has improved the restriction of depth by using a fixed address assignment method, and has enhanced the broadcast occurrence by devising a static routing method to a packet movement between floors. Regardless of entire network, additionally, this was to enable internal communication reliably by composing an independent PAN. Specially, in this paper, we implemented the proposed wireless protocol and proved stability and practicality through experiment appliances of control of devices established in a large building.

Quantitative Evaluation of the Performance of Monaural FDSI Beamforming Algorithm using a KEMAR Mannequin (KEMAR 마네킹을 이용한 단이 보청기용 FDSI 빔포밍 알고리즘의 정량적 평가)

  • Cho, Kyeongwon;Nam, Kyoung Won;Han, Jonghee;Lee, Sangmin;Kim, Dongwook;Hong, Sung Hwa;Jang, Dong Pyo;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.24-33
    • /
    • 2013
  • To enhance the speech perception of hearing aid users in noisy environment, most hearing aid devices adopt various beamforming algorithms such as the first-order differential microphone (DM1) and the two-stage directional microphone (DM2) algorithms that maintain sounds from the direction of the interlocutor and reduce the ambient sounds from the other directions. However, these conventional algorithms represent poor directionality ability in low frequency area. Therefore, to enhance the speech perception of hearing aid uses in low frequency range, our group had suggested a fractional delay subtraction and integration (FDSI) algorithm and estimated its theoretical performance using computer simulation in previous article. In this study, we performed a KEMAR test in non-reverberant room that compares the performance of DM1, DM2, broadband beamforming (BBF), and proposed FDSI algorithms using several objective indices such as a signal-to-noise ratio (SNR) improvement, a segmental SNR (seg-SNR) improvement, a perceptual evaluation of speech quality (PESQ), and an Itakura-Saito measure (IS). Experimental results showed that the performance of the FDSI algorithm was -3.26-7.16 dB in SNR improvement, -1.94-5.41 dB in segSNR improvement, 1.49-2.79 in PESQ, and 0.79-3.59 in IS, which demonstrated that the FDSI algorithm showed the highest improvement of SNR and segSNR, and the lowest IS. We believe that the proposed FDSI algorithm has a potential as a beamformer for digital hearing aid devices.