• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.033 seconds

Microwave Annealing in Ag/HfO2/Pt Structured ReRAM Device

  • Kim, Jang-Han;Kim, Hong-Ki;Jang, Ki-Hyun;Bae, Tae-Eon;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.373-373
    • /
    • 2014
  • Resistive-change random access memory (ReRAM) device is one of the promising candidates owing to its simple structure, high scalability potential and low power operation. Many resistive switching devices using transition metal oxides materials such as NiO, Al2O3, ZnO, HfO2, $TiO_2$, have attracting increased attention in recent years as the next-generation nonvolatile memory. Among various transition metal oxides materials, HfO2 has been adopted as the gate dielectric in advanced Si devices. For this reason, it is advantageous to develop an HfO2-based ReRAM devices to leverage its compatibility with Si. However, the annealing temperature of these high-k thin films for a suitable resistive memory switching is high, so there are several reports for low temperature process including microwave irradiation. In this paper, we demonstrate the bipolar resistive switching characteristics in the microwave irradiation annealing processed Ag/HfO2/Pt ReRAM device. Compared to the as-deposited Ag/HfO2/Pt device, highly improved uniformity of resistance values and operating voltage were obtained from the micro wave annealing processed HfO2 ReRAM device. In addition, a stable DC endurance (>100 cycles) and a high data retention (>104 sec) were achieved.

  • PDF

Cable Effect Analysis Inside an Electrically Large Structure from an External Electromagnetic Waves (전자파에 의한 대형구조물 내부 케이블 영향 해석)

  • Lee, Jae-Min;Yoon, Seong-Sik;Lee, Jae-Wook;Han, Jung-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.155-158
    • /
    • 2017
  • With the help of technical development in the electronic industries, the electronic devices employing the cutting-edged technology are spread in all the area requiring electromagnetic communications. Especially, because of the presence of electronic devices in a variety of research fields like automotive vehicle, train, and aircraft, the research area such as the malfunction and critical damage of the internal system and microwave devices due to the unexpected radiated high-powered EM effects are very important even for the possible occurrence of human damage. In this paper, the effects of electromagnetic fields into the cable connecting the electronic devices and many sensors inside the target structure is treated because of potential malfunction or hardware disorders. In addition, correlation function and transmission line theory have been employed for the analysis of the induced current on the cable inside an electrically large resonant structure.

Thin and Hermetic Packaging Process for Flat Panel Display Application

  • Kim, Young-Cho;Jeong, Jin-Wook;Lee, Duck-Jung;Choi, Won-Do;Lee, Sang-Geun;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 2002
  • This paper presents a study on the tubeless Plasma Display Panel (PDP) packaging using glass-to-glass electrostatic bonding with intermediate amorphous silicon. The bonded sample sealing the mixed gas with three species showed high strength ranging from 2.5 MPa to 4 MPa. The glass-to-glass bonding for packaging was performed at a low temperature of $180^{\circ}C$ by applying bias of 250 $V_{dc}$ in ambient of mixed gases of He-Ne(27 %)-Xe(3 %). The tubeless packaging was accomplished by bonding the support glass plate of $30mm{\times}50mm$ on the rear glass panel and the capping glass of $20mm{\times}20mm$. The 4-inch color AC-PDP with thickness of 8 mm was successfully fabricated and fully emitted as white color at a firing voltage of 190V.

REffects of Surge Protective Devices with Respect to Types of System Grounding and Wiring Methods (전원계통의 접지방식 및 배선방식에 따른 서지보호기의 효과)

  • 이수봉;이복희;길형준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.90-99
    • /
    • 2004
  • High speed info-communications equipment are required with development of highly information-oriented society, the intelligent industrial facilities and social systems such as administrative, financial and traffic systems, are gradually becoming to automation, which are composed of the integrated circuits and micro-semiconductors, remote control and operation. Thus modern micro-electronic circuits can frequently be damaged by lightning surge. The protection of electronic circuits from lightning overvoltages is concentrated very interesting. In this paper, for the purpose of providing the effective protection method of electronic devices such micro-computers from lightning surges in a residential building, the protection effect of surge protective devices according to types of system groundings were experimentally analyzed. Also the effective installation method of surge protective devices was examined and proposed. The installation of SPDs in retrofits was a high remnant voltage across the protected device owing to the inductance in the long wires to the SPDs. Finally the method of installing the SPD by twisted pain wires is remarkably effective for fast rising transient overvoltages.

Nano-Floating Gate Memory Devices with Metal-Oxide Nanoparticles in Polyimide Dielectrics

  • Kim, Eun-Kyu;Lee, Dong-Uk;Kim, Seon-Pil;Lee, Tae-Hee;Koo, Hyun-Mo;Shin, Jin-Wook;Cho, Won-Ju;Kim, Young-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • We fabricated nano-particles of ZnO, $In_2O_3$ and $SnO_2$ by using the chemical reaction between metal thin films and polyamic acid. The average size and density of these ZnO, $In_2O_3$ and $SnO_2$ nano-particles was approximately 10, 7, and 15 nm, and $2{\times}10^{11},\;6{\times}10^{11},\;2.4{\times}10^{11}cm^{-2}$, respectively. Then, we fabricated nano-floating gate memory (NFGM) devices with ZnO and $In_2O_3$ nano-particles embedded in the devices' polyimide dielectrics and silicon dioxide layers as control and tunnel oxides, respectively. We measured the current-voltage characteristics, endurance properties and retention times of the memory devices using a semiconductor parameter analyzer. In the $In_2O_3$ NFGM, the threshold voltage shift (${\Delta}V_T$) was approximately 5 V at the initial state of programming and erasing operations. However, the memory window rapidly decreased after 1000 s from 5 to 1.5 V. The ${\Delta}V_T$ of the NFGM containing ZnO was approximately 2 V at the initial state, but the memory window decreased after 1000 s from 2 to 0.4 V. These results mean that metal-oxide nano-particles have feasibility to apply NFGM devices.

Simultaneous Low-Temperature Plasma Annealing Process for Enhancing the Electrical Performance of a-IGZO Thin Film Transistors (a-IGZO 박막 트랜지스터의 전기적 성능 개선을 위한 동시 저온 플라즈마 어닐링 공정)

  • Jung Hun Choi;Jae-Yun Lee;Beom Gu Lee;Jung Moo Seo;Sung-Jin Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.630-636
    • /
    • 2024
  • The display industry has recently been at the forefront of innovative advancements in modern electronic devices. Technological progress such as flexible display holds significant potential across various application fields, particularly in wearable devices and rollable displays. A low-temperature process is essential for fabricating such displays. One of the key technologies in displays is the thin film transistor (TFT), with amorphous indium gallium zinc oxide (a-IGZO) receiving particular attention. a-IGZO is widely applied in high-performance displays due to its high charge mobility and stability. While a thermal treatment above 350℃ is typically required to maximize the electrical performance of a-IGZO TFTs, such high temperatures pose challenges for utilizing polymer substrates like plastics. Here, we thesis investigates the simultaneous low-temperature plasma annealing process to develop next-generation high-performance flexible display devices. To define the optimal temperature, devices were fabricated and analyzed at varying temperatures of 40℃, 80℃, 120℃, and 160℃. Experimental results indicated that devices fabricated at 160℃ and 80℃ exhibited superior performance, with those at 160℃ demonstrating better performance in terms of current ratio, threshold voltage, and subthreshold swing. These findings confirm that the simultaneous low-temperature plasma annealing process is effective for next-generation high-performance displays.

Analysis on the Teachers' Utilization Levels of Smart Devices for Their Improvement (스마트기기에 대한 교사의 활용 수준과 개선 사항에 대한 실태 분석)

  • Kim, Chongwoo
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.4
    • /
    • pp.483-490
    • /
    • 2014
  • Smart classrooms have been set up nationwide to utilize smart devices for teaching and learning in the knowledge- based society, As this trend might quickly spread, we have investigated the utilization levels, and issues around the facilities from the experienced teachers. In order to study the impact of easy access to smart devices, the teacher sampling groups were divided into two: one teacher group responsible for smart classrooms and the other group teaching in ordinary classrooms. Survey questions dealt with teacher needs analyses, their expectation of their students' attitude changes, their satisfaction and utilization levels of smart devices currently built in classrooms. The results showed us that teachers have vague expectation about the smart devices and want more highly applicable devices for instruction, improvement of their compatibility with other multimedia devices or applications as well as to improve the resolution of electronic boards. and basic functions of information search and videos that they use everyday.

Pillar Type Silicon-Oxide-Nitride-Oxide-Silicon Flash Memory Cells with Modulated Tunneling Oxide

  • Lee, Sang-Youl;Yang, Seung-Dong;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Seong-Hyeon;Lee, Hi-Deok;Lee, Ga-Won;Oh, Jae-Sub
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.250-253
    • /
    • 2013
  • In this paper, we fabricated 3D pillar type silicon-oxide-nitride-oxide-silicon (SONOS) devices for high density flash applications. To solve the limitation between erase speed and data retention of the conventional SONOS devices, bandgap-engineered (BE) tunneling oxide of oxide-nitride-oxide configuration is integrated with the 3D structure. In addition, the tunneling oxide is modulated by another method of $N_2$ ion implantation ($N_2$ I/I). The measured data shows that the BE-SONOS device has better electrical characteristics, such as a lower threshold voltage ($V_{\tau}$) of 0.13 V, and a higher $g_{m.max}$ of 18.6 ${\mu}A/V$ and mobility of 27.02 $cm^2/Vs$ than the conventional and $N_2$ I/I SONOS devices. Memory characteristics show that the modulated tunneling oxide devices have fast erase speed. Among the devices, the BE-SONOS device has faster program/erase (P/E) speed, and more stable endurance characteristics, than conventional and $N_2$ I/I devices. From the flicker noise analysis, however, the BE-SONOS device seems to have more interface traps between the tunneling oxide and silicon substrate, which should be considered in designing the process conditions. Finally, 3D structures, such as the pillar type BE-SONOS device, are more suitable for next generation memory devices than other modulated tunneling oxide devices.

Novel dental anesthetic and associated devices: a scoping review

  • Kyung Hyuk Min;Zac Morse
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.3
    • /
    • pp.161-171
    • /
    • 2024
  • The efficient management of pain and discomfort is essential for successful dental treatment and patient compliance. Dental professionals are commonly evaluated for their ability to perform treatment with minimal patient discomfort. Despite advancements in traditional local dental anesthesia techniques, the pain and discomfort associated with injections remain a concern. This scoping review aims to provide a comprehensive overview of the literature on novel dental anesthetics and associated devices designed to alleviate pain and discomfort during dental procedures. The Joanna Briggs Institute and the Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews guidelines were used to prepare the review. Six databases and two sources of gray literature were searched. This review analyzed 107 sources from 1994 to 2023. Local anesthesia devices were grouped into computer-controlled local anesthetic delivery (CCLAD) systems, intraosseous anesthesia (IOA), vibratory stimulation devices, and electronic dental anesthesia (EDA). CCLAD systems, particularly the Wand and Single-Tooth Anesthesia, have been the most researched, with mixed results regarding their effectiveness in reducing pain during needle insertion compared to traditional syringes. However, CCLAD systems often demonstrated efficacy in reducing pain during anesthetic deposition, especially during palatal injections. Limited studies on IOA devices have reported effective pain alleviation. Vibrating devices have shown inconsistent results in terms of pain reduction, with some studies suggesting their primary benefit is during needle insertion rather than during the administration phase. EDA devices are effective in reducing discomfort but have found limited applicability. These findings suggest that the CCLAD systems reduce injection pain and discomfort. However, the evidence for other devices is limited and inconsistent. The development and research of innovative technologies for reducing dental pain and anxiety provides opportunities for interdisciplinary collaboration and improved patient care in dental practice.