• Title/Summary/Keyword: Electronic device

Search Result 4,550, Processing Time 0.036 seconds

Impedance Calculation of an Underground Transmission Cable System Installed with a Sheath Current Reduction Device

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Wang, Xin Heng;Song, Yong Hua
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.236-242
    • /
    • 2004
  • Previous research results indicated that the designed current reduction device could effectively reduce the sheath circulating current and that its RDP protection device could shield it against both fault and lightning strokes. In this paper, cable impedance is analyzed using wavelet analysis and distance relay algorithm following the installation of these devices so that the operation of distance relay can be estimated. The test results confirm that in these devices, the fault inception angle and SVL bonding types have no impact on the change of cable impedance. In other words, the conventional distance relay can be used without a new relay setting. Thus we can finally assert that the designed current reduction device and its protection device are effective and can be safely installed on the cable transmission system without disturbance.

A Study on the Emission Properties of Organic Electroluminescence Device by Various Stacked Organics Structures (유기물 적층 구조에 따른 유기 발광 소자의 발광 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.943-949
    • /
    • 2000
  • In this paper, the single and double heterostructure organic light-emitting devices(OLEDs) were fabricated. The single heterostructure OLED(TYPE 1) is consisted of TPD as a HTL(hole transfer layer) and Alq$_3$as an EML(emitting layer). The double heterostructure OLED(TYPE 2) is consisted of TPD as a HTL, Alq$_3$as an EML and PBD as an ETL(electron transfer layer). The another double heterostructure OLED(TYPE 3) is consisted of TPD as a HTL, PBD as an EML and Alq$_3$as an ETL. We obtained a strong green emission device with maximum EL emission wavelength 500nm in TYPE 3. When the applied voltage was 12V, the emission luminescence was 120.9cd/㎡. The chromaticity index of TYPE 3 was x=0.29, y=0.50. In the characteristic plot of current-voltage, TYPE 3 device was turned on at 6.9V. This voltage was a fairly low turn-on voltage. TYPE 1 and 2 device were turned on at 10V and 8.9V respectively. These types showed no good properties over that of TYPE 3.

  • PDF

A Study on the 0.5$\mu\textrm{m}$ Dual Gate High Voltage Process for Multi Operation Applications (Multi Operation을 위한 0.5$\mu\textrm{m}$Dual Gate 고전압 공정에 관한 연구)

  • 송한정;김진수;곽계달
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.463-466
    • /
    • 2000
  • According to the development of the semiconductor micro device technology, IC chip trends the high integrated, low power tendency. Nowadays, it can be showed the tendency of single chip in system level. But in the system level, IC operates by multi power supply voltages. So, semiconductor process is necessary for these multi power operation. Therefore, in this paper, dual gate high voltage device that operate by multi power supply of 5V and 20V fabricated in the 0.5${\mu}{\textrm}{m}$ CMOS process technology and its electrical characteristics were analyzed. The result showed that the characteristics of the 5V device almost met with the SPICE simulation, the SPICE parameters are the same as the single 5V device process. And the characteristics of 20V device showed that gate length 3um device was available without degradation. Its current was 520uA/um, 350uA/um for NMOS, PMOS and the breakdown voltages were 25V, 28V.

  • PDF

NiO-transparent Metal-oxide Semiconductor Photoelectric Devices (NiO 기반의 투명 금속 산화물 반도체 광전소자)

  • Ban, Dong-Kyun;Park, Wang-Hee;Eun, Seong Wan;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2016
  • NiO serves as a window layer for Si photoelectric devices. Due to the wide energy bandgap of NiO, high optical transparency (over 80%) was achieved and applied for Si photoelectric devices. Due to the high the high mobility, the heterojunction device (Al/n-Si/$SiO_2$/p-NiO/ITO) provide ultimately fast photoresponses of rising time of $38.33{\mu}s$ and falling time of $39.25{\mu}s$, respectively. This functional NiO layer would provide benefits for high-performing photoelectric devices, including photodetectors and solar cells.

Properties of Organic light-emitting Diodes with various Electron-transporting layers (전자 수송층에 따른 유기 발광 다이오드 소자의 전기적 특성)

  • Lee, Seok-Jae;Park, Jung-Hyun;Seo, Ji-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.436-437
    • /
    • 2007
  • Organic light-emitting diodes (OLEDs) were fabricated with the electron dominant complex, 4,7-diphenyl-1, 10-phenanthroline (Bphen) into the traditional electron transporting material of tris (S-hydroxyquinoline) aluminum $(Alq_3)$, neat $Alq_3$ and Bphen as electron-transporting layers (ETLs), respectively. Use of the Bphen material results in efficient electron injection and transport, allowing for high luminous efficiency devices. The devices with neat $Alq_3$(Device1), 1:1 mixed $Alq_3$ : Bphen(Device2), and Bphen(Device3) have efficiency of 15.3cd/A, 16.9cd/A, 20.9cd/A, respectively, at $20\;mA/cm^2$. The efficiency characteristic of device with Bphen is best, but the device that is satisfied high efficiency and stability at once is observed in Device2.

  • PDF

Implementation of Multichannel LAPS and Measurement System for Detection of the pH Variation Using an Implemented Device. (다채널 LAPS 제작 및 이를 이용한 pH 변화량 검출 시스템 구현)

  • Bae, Sang-Kon;Park, Il-Yong;Park, Young-Sik;Jang, Soo-Won;Lee, Sung-Ha;Kang, Shin-Won;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.239-249
    • /
    • 2001
  • LAPS is a device which is dependent on the bias potential between a pH sensitivity and alternating photocurrent. We implemented the multichannel LAPS device and the detection system which was able to effectively measure the sensor's output by a synchronized detection circuit and multiple methods. The implemented LAPS was structured the multiple sensing sites for analyzing a various components simultaneously. And the system included a time-division method using one pre-amplifier being able to detect the multichannel pH concentration preserving a high S/N ratio and a control part. System hardware consists of a pre-amplifier, digital unit and sensor unit, and software consists of a system program and PC program. As results, we verified the successful operations of system including an implemented pre-amplifier and signal processing units.

  • PDF

In situ photoemission and inverse photoemission studies on the interfacial electronic structures of organic materials (In situ 광전자분광/역광전자분광 분석을 이용한 유기물 계면의 전자구조 연구)

  • Yi, Yeonjin
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.4-11
    • /
    • 2015
  • During last two decades, remarkable progresses have been made in organic electronic devices, such as organic light-emitting device, organic photovoltaic and many other applied devices. Many of these progress are attributed to the multilayered/heterojunction device architectures, which could be achieved from the control of "interfacial energetics". In that sense, the interfacial electronic structures in organic electronic devices have a decisive role in device performance. However, the prediction of the interfacial electronic structures from each separate material is not trivial. Many complex phenomena occur at the interface and these can be only understood from thorough measurements on interfacial electronic structures in situ. Photoemission and inverse photoemission spectroscopy have been known as the most proper measurement tools to analyze these interfacial electronic structures. In this review, the basic principles of (inverse) photoemission spectroscopy and typical measurement results on organic/inorganic interfaces are introduced.

Electronic Attendance System Using Smart Device and High Frequency Signal

  • Myoungbeom Chung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.103-111
    • /
    • 2023
  • Recently, many universities have used various electronic attendance systems such as NFC, QR code, Sound-QR, Bluetooth BLE authentication, and face recognition to process attendance. However, existing methods have various problems such as attendance errors due to deformation of authentication signals, mis-recognition attendance from outside the classroom, and difficulty to process seat absence during class. Therefore, this study proposes a high-frequency signal-based electronic attendance system to solve these problems and manage more accurate electronic attendance. As the high-frequency signal replaces the BLE signal, and the transmission range of the signal is limited to the classroom, and the signal value can be immediately changed if a change of the signal is needed. To verify the performance of the proposed system, we conducted a comparative experiment with the Bluetooth based electronic attendance system, and as a result, the proposed method showed high accuracy. Thus, the proposed method will be a useful service that can be immediately used in smart device-based electronic attendance system.

Human Detection and Fuzzy Temperature Control System for Energy Reduction of Cooling Device in Elevator (승강기용 냉각장치의 에너지 절감을 위한 사람 검출과 퍼지 온도 제어 시스템)

  • Eum, Hyukmin;Jang, Sukyoon;Lee, Heejin;Park, Mignon;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.147-154
    • /
    • 2015
  • In this paper, we propose human detection and fuzzy temperature control system for energy reduction of cooling device in elevator. In order to improve problems of existing cooling device using the refrigerant, energy reduction and efficient management are continuously achieved because of operation of thermoelectric cooling device using the human detection and fuzzy temperature control system. The proposed system confirms the number of passengers in elevator and temperature is then controlled by those numbers and an average temperature for the season in fuzzy system. The human detection method scans the number of passengers using a head part as a feature based on bird's-eye view camera in elevator. The fuzzy system determines elevator internal temperature considering atmospheric temperature and the scanned passenger numbers as a look-up table. The proposed system reduces energy of the cooling device through the human detection and temperature control. In experiment, energy reduction is confirmed and the performance of the proposed system is verified.