• Title/Summary/Keyword: Electronic device

Search Result 4,544, Processing Time 0.031 seconds

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

Capacitance Properties of $Poly-\gamma-Benzyl\;_L-Glutamate$ in Organic Ultra Thin Films ($Poly-\gamma-Benzyl\;_L-Glutamate$ 유기초박막의 정전용량특성)

  • Kim, Byung-Geun;Kim, Chang-Bok;Kim, Young-Keun;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.147-149
    • /
    • 2002
  • Recently, the study on development of electrical and electronic device is done to set miniature, high degrees of integration and efficiency by using inorganic materials the study of Langmuir-Boldgett(LB) method that uses organic materials because of the limitation for the ultrasmall size. The structure of MIM(Metal-Insulator-Metal) device is Cr-Au/PBLG/ Al. the number of accumulated layers are 1, 3, 5, 7, 9. The I-V characteristic of the device is measured from 0[V] to 2[V] and the characteristic of current-time of the devices. We have investigated the capacitance because PBLG system have a accumulated layers the maximum value of measured current is increased as the number of accumulated layers are decreased. The capacitor properties of a thin film is better as the distance between electrodes is smaller. The results have shown the insulating materials and could control the conductivity by accumulated layers.

  • PDF

An Edge AI Device based Intelligent Transportation System

  • Jeong, Youngwoo;Oh, Hyun Woo;Kim, Soohee;Lee, Seung Eun
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.166-173
    • /
    • 2022
  • Recently, studies have been conducted on intelligent transportation systems (ITS) that provide safety and convenience to humans. Systems that compose the ITS adopt architectures that applied the cloud computing which consists of a high-performance general-purpose processor or graphics processing unit. However, an architecture that only used the cloud computing requires a high network bandwidth and consumes much power. Therefore, applying edge computing to ITS is essential for solving these problems. In this paper, we propose an edge artificial intelligence (AI) device based ITS. Edge AI which is applicable to various systems in ITS has been applied to license plate recognition. We implemented edge AI on a field-programmable gate array (FPGA). The accuracy of the edge AI for license plate recognition was 0.94. Finally, we synthesized the edge AI logic with Magnachip/Hynix 180nm CMOS technology and the power consumption measured using the Synopsys's design compiler tool was 482.583mW.

Passivity Control of a Passive Haptic Device based on Passive FME Analysis

  • Cho, Chang-Hyun;Kim, Beom-Seop;Kim, Mun-Sang;Song, Jae-Bok;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1559-1564
    • /
    • 2003
  • In this paper, a control method is presented to improve performance of haptic display on a passive haptic device equipped with passive actuators. In displaying a virtual wall with the passive haptic device, an unstable behavior occurs with excessive actions of brakes due to the time delay mainly arising from the update rate of the virtual environment and force approximation originated from the characteristics of the passive actuators. The previous T.D.P.C. (Time Domain Passivity Control) method was not suitable for the passive haptic device, since a programmable damper used in the previously introduced T.D.P.C. method easily leads to undesirable behaviors. A new passivity control method is evaluated with considering characteristics of the passive device. First, we propose a control method which is designed under the analysis of the passive FME (Force Manipulability Ellipsoid). And then a passivity control scheme is applied to the proposed control method. Various experiments have been conducted to verify the proposed method with a 2-link mechanism.

  • PDF

A Novel Electrostatic Discharge (ESD) Protection Device by Current Feedback Using $0.18\;{\mu}m$ Process ($0.18\;{\mu}m$ 공정에서 전류 피드백을 이용한 새로운 구조의 정전기 보호 소자에 관한 연구)

  • Bae, Young-Seok;Lee, Jae-In;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.3-4
    • /
    • 2009
  • As device process technology advances, effective channel length, the thickness of gate oxide, and supply voltage decreases. This paper describes a novel electrostatic discharge (ESD) protection device which has current feedback for high ESD immunity. A conventional Gate-Grounded NMOS (GGNMOS) transistor has only one ESD current path, which makes, the core circuit be in the safe region, so an GGNMOS transistor has low current immunity compared with our device which has current feedback path. To simulate our device, we use conventional $0.18\;{\mu}m$ technology parameters with a gate oxide thickness of $43\;{\AA}$ and power supply voltage of 1.8 V. Our simulation results indicate that the area of our ESD protection, device can be smaller than a GGNMOS transistor, and ESD immunity is better than a GGNMOS transistor.

  • PDF

A Study About Design and Characteristic Improvement According to P-base Concentration Charge of 500 V Planar Power MOSFET (500 V 급 Planar Power MOSFET의 P 베이스 농도 변화에 따른 설계 및 특성 향상에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.284-288
    • /
    • 2013
  • Power MOSFETs(Metal Oxide Semiconductor Field Effect Transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. We have experimental results and explanations on the doping profile dependence of the electrical behavior of the vertical MOSFET. The device is fabricated as $8.25{\mu}m$ cell pitch and $4.25{\mu}m$ gate width. The performances of device with various p base doping concentration are compared at Vth from 1.77 V to 4.13 V. Also the effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for various applications can be further optimized at power device.

A Study on the Interface Properties of Metal/Organic Films/Metal (Metal/Organic Films/Metal에서 계면특성에 관한 연구)

  • Song, Jin-Won;Cho, Su-Young;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.723-726
    • /
    • 2002
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 10[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Poly-$\gamma$ Benzyl $_D$-Glutamate/Al; the number of accumulated layers is 1, 3, 5 and 7. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. LB film accumulated by monolayer on an ITO. In the cyclicvoltammetry, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in $LiBF_4$ solution, stable up to 0.9V vs. Ag/AgCl.

  • PDF

Current-voltage Characteristics of Proton Irradiated NPT Type Pourer Diode (양성자가 주입된 NPT형 전력용 다이오드의 전류-전압 특성)

  • Kim Byoung-Gil;Baek Jong-Mu;Lee Jae-Sung;Bae Young-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Local minority carrier lifetime control by means of particle irradiation is an useful technology for Production of modern silicon Power devices. Crystal damage due to ion irradiation can be easily localized by choosing appropriate irradiation energy and minority tarrier lifetime can be reduced locally only in the damaged layer. In this work, proton irradiation technology was used for improving the switching characteristics of a un diode. The irradiation was carried out with various energy and dose condition. The device was characterized by current-voltage, capacitance-voltage, and reverse recovery time measurements. Forward voltage drop was increased to 1.1 V at forward current of 5 A, which was $120\%$ of its original device. Reverse leakage current was 64 nA at reverse voltage of 100 V, and reverse breakdown voltage was 670 V which was the same voltage as original device without irradiation. The reverse recovery time of device was reduced to about $20\%$ compared to that of original device without irradiation.

Development of Real-time Heart Rate Measurement Device Using Wireless Pressure Sensor (무선 압력센서를 이용한 실시간 맥박수 측정기 개발)

  • Choi, Sang-Dong;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.284-288
    • /
    • 2016
  • Among the various physiological information that could be obtained from human body, heartbeat rate is a commonly used vital sign in the clinical milieu. Photoplethysography (PPG) sensor is incorporated into many wearable healthcare devices because of its advantages such as simplicity of hardware structure and low-cost. However, healthcare device employing PPG sensor has been issued in susceptibility of light and motion artifact. In this paper, to develop the real-time heart rate measurement device that is less sensitive to the external noises, we have fabricated an ultra-small wireless LC resonant pressure sensor by MEMS process. After performance evaluation in linearity and repeatability of the MEMS pressure sensor, heartbeat waveform and rate on radial artery were obtained by using resonant frequency-pressure conversion method. The measured data using the proposed heartbeat rate measurement system was validated by comparing it with the data of an commercialized heart rate measurement device. Result of the proposed device was agreed well to that of the commercialized device. The obtained real time heartbeat wave and rate were displayed on personal mobile system by bluetooth communication.

ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices (ITO 나노와이어 기반의 투명 산화물 반도체 광전소자)

  • Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.808-812
    • /
    • 2015
  • Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.