• Title/Summary/Keyword: Electronic conductivity

Search Result 1,038, Processing Time 0.022 seconds

Dual Phase Conductive CO2 Membranes: Mechanism, Microstructure, and Electrical Conductivity (Dual Phase 전도성 CO2 분리막: 메커니즘, 미세구조 및 전기전도도)

  • Lee, Shi-Woo;Yu, Ji-Haeng;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.424-429
    • /
    • 2007
  • Novel conductive $CO_2$ membranes composed of dual phases, molten carbonates and electronic conducting ceramics, were investigated. As the microstructure control of electronic conducting ceramic supports is extremely important to keep the molten carbonates stable in the membranes by a capillary force applied by the pore structure of the supports, we have scrutinized the microstructure of the electronic conducting supports utilizing microscopic images and gas permeability measurement. From the evaluation of the electrical conductivities of the molten carbonates and the electronic conducting ceramic supports, we found that the ionic conductivity of the molten carbonates could determine $CO_2$ flux through the dual phase membranes if the surface exchange rate were relatively high enough.

Electrical Chracteristics of $Al_2$O$_3$ doped ZnO (Al$_2$O$_3$가 첨가된 ZnO의 전기특성변화)

  • Park, U-Sung-;Park, Choon-Bae-
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.17-20
    • /
    • 1994
  • Electrical Chracteristics of ZnO doped with Al$_2$O$_3$were investigated using complexe impedence measurements. The electrical conductivity of ZnO samples increased whithin 0.5mol% of Al$_2$O$_3$ doping, but decreased abode 0.5mol%. The increase and decrease of electrical conductivity seem to be the effect of Al$_2$O$_3$ doner doping and increasement of the number of grain boundary ZnO, respectively.

Electrochamical Properties of $LiFePO_4$ Electrodes for Lithium Polymer Battery (리튬 폴리머 전지 $LiFePO_4$의 전기화학적 특성)

  • Kong, Ming-Zhe;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.5-9
    • /
    • 2005
  • $LiFePO_4$ is a potential candidate for the cathode material of the lithium polymer batteries. $LiFePO_4$ cathode active materials were synthesized by coating on the $LiFePO_4$ was tried using $TiO_2$ and corbon in oreder to increase cyclic performance and electronic conductivity. Highly dispersed on the particles enhances the electronic conductivity and increases the capacity. For lithium polymer battery applications, $LiFePO_4$/SPE/Li and $LiFePO_4$-$TiO_2$/SPE/Li 'cells were characterized electrochemically by cyclic volatammetry and charge/discharge cycling. The $LiFePO_4$-carbon-$TiO_2$ cathode in PVDF-PC-EC-$LiCIO_4$ electrolyte showed high capacity at high current density.

  • PDF

Electrical Conductivities of [(ZrO2)$_{1-x}$(CeO2)$_x$]$_{0.92}$(Y$_2$O$_3$)$_{0.08}$ Solid Solution ([(ZrO2)$_{1-x}$(CeO2)$_x$$_{0.92}$(Y$_2$O$_3$)$_{0.08}$ 고용체의 전기전도도)

  • 이창호;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1323-1328
    • /
    • 1998
  • The electrical conductivities of the yttria (8mol%) stabilizedzirconia-ceria solid solutions were measured as a function of oxygen partial between 80$0^{\circ}C$ and 100$0^{\circ}C$ using 4-probe d.c. method Under pure oxygen atmosphere the oxygen ionic conductivity of CeO2-ZrO2 decreased with the concentration of CeO2 Under reducing condition electronic conduction due to the redox equilibrium of Ce ion was observed. Total ionic and electronic conductivities fitted by a defect model enabled to determine the electronic transference number(tei) which increased with the concentration of CeO2 and with the degree of reduction.

  • PDF

Grain Size Dependence of Ionic Conductivity of Polycrystalline Doped Ceria

  • Hong, Seong-Jae
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.122-127
    • /
    • 1998
  • Conductivities of polycrystalline ceria doped with several rare earth oxides were measured by AC admittance and DC four probe method. The conductions were separated into grain and grain boundary contributions using the complex admittance technique as well as grain size dependence of conductivity. The grain size dependence of polycrystalline conductivity, which can be adequately described by the so-called brick layer model, appears to give a more reliable measure of the grain conductivity compared to the complex admittance method. Polycrystalline resistivity(1/conductivity) increases linearly with the reciprocal of grain size. The intercept of resistivity vs. inverse grain size plot gives a measure of the grain resistivity and the slope gives a measure of the grain boundary resistivity. It was also noted that errors involved in the analysis of experimental data may be different between the complex admittance method and the impedance method. A greater resolution of the spectra was found in the complex admittance method, insofar as the present work is concerned, suggesting that the commonly used equivalent circuit may require re-evaluation.

  • PDF

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film (소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Fabrication Process and Characterization of High Thermal Conductivity-Low CTE SiCp/Al Metal Matrix Composites for Electronic Packaging Applications (전자패키징용 고열전도도-저열팽창계수 SiCp/Al 금속복합재료의 제조공정 및 특성평가)

  • 이효수;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.190-194
    • /
    • 2000
  • The fabrication process and thermal properties of 50∼76vo1% SiCp/Al metal matrix composites (MMCs) were investigated. The 50∼76vo1% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 85∼170W/mK and coefficient of thermal expansion (CTE) were ranged 10∼6ppm/K. Specially, the thermal conductivity and CTE of 71vo1%SiCp/Al MMCs were ranged l15∼156W/mK and 6∼7ppm/K, respectively, which showed a improved thermal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

Numerical Analysis of Through Transmission Pulsed Eddy Current Testing and Effects of Pulse Width Variation

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • By using numerical analysis methods, through transmission type pulsed eddy current (PEC) testing is modeled and PEC signal responses due to varying material conductivity, permeability, thickness, lift-off and pulse width are investigated. Results show that the peak amplitude of PEC signal gets reduced and the time to reach the peak amplitude is increased as the material conductivity, permeability, and specimen thickness increase. Also, they indicate that the pulse width needs to be shorter when evaluating the material conductivity and the plate thickness using the peak amplitude, and when the pulse width is long, the peak time is found to be more useful. Other results related to lift-off variation are reported as well.

Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes (리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF

Electric Characteristics of Fatty Acid LB Films for Change of Temperature (은도 변화에 대한 지방산 LB막의 전기적 특성)

  • 이준호;김도균;최용성;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.167-170
    • /
    • 1998
  • The electrical characteristics of Stearic acid LB films were investigated to develop the gas sensor using Langmuir-Blodgett(LB) films. The deposition status of LB films were verified by the measurements of UV absorbance and I-V characteristics. The conductivity of Stearic acid LB films at room temperature was $10^{-8}[S/cm]$, which is typical of semiconductor. The conductivity was found to increase as the temperature was increased. The acitivation energy was about 1[eV].

  • PDF