• Title/Summary/Keyword: Electronic and thermal properties

Search Result 1,071, Processing Time 0.031 seconds

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Composition-Some Properties Relationships of Non-Alkali Multi-component La2O3-Al2O3-SiO2 Glasses (무알칼리 다성분 La2O3-Al2O3-SiO2 유리의 조성과 몇 가지 물성의 관계)

  • Kang, Eun-Tae;Yang, Tae-Young;Hwang, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • Non-Alkali multicomponent $La_2O_3-Al_2O_3-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for thermal expansion coefficient, glass transition temperature, Young's modulus, Shear modulus and density are as follows: ${\alpha}(/^{\circ}C)=8.41{\times}10^{-8}x_1+5.72{\times}10^{-7}x_2+2.13{\times}10^{-7}x_3+1.09{\times}10^{-7}x_4+1.10{\times}10^{-7}x_5+1.15{\times}10^{-7}x_6+2.72{\times}10^{-8}x_7+2.41{\times}10^{-7}x_8-1.08{\times}10^{-8}x_1x_2+4.28{\times}10^{-8}x_3x_7-2.02{\times}10^{-8}x_3x_8-1.60{\times}10^{-8}x_4x_5-2.71{\times}10^{-9}x_4x_8-2.19{\times}10^{-8}x_5x_6-3.89{\times}10^{-8}x_5x_7$ $T_g(^{\circ}C)=7.36x_1+15.35x_2+20.14x_3+8.97x_4+13.85x_5+4.22x_6+28.21x_7-1.44x_8-0.84x_2x_3-0.45x_2x_5-1.64x_2x_7+0.93x_3x_8-1.04x_5x_8-0.48x_6x_8$ $E(GPa)=2.04x_1+14.26x_2-1.22x_3-0.80x_4-2.26x_5-1.67x_6-1.27x_7+3.63x_8-0.24x_1x_2-0.07x_2x_8+0.14x_3x_6-0.68x_3x_8+0.29x_4x_5+1.28x_5x_8$ $G(GPa)=0.35x_1+1.78x_2+1.35x_3+1.87x_4+9.72x_5+29.16x_6-0.99x_7+3.60x_8-0.48x_1x_6-0.50x_2x_5+0.08x_3x_7-0.66x_3x_8+0.94x_5x_8$ ${\rho}(g/cm^3)=0.09x_1+0.51x_2-4.94{\times}10^{-3}x_3-0.03x_4+0.45x_5-0.07x_6-0.10x_7+0.07x_8-9.60{\times}10^{-3}x_1x_2-8.20{\times}10^{-3}x_1x_5+2.17{\times}10^{-3}x_3x_7-0.03x_3x_8+0.05x_5x_8$ The optimal glass composition similar to the thermal expansion coefficient of Si based on these fitted models is $65.53SiO_2{\cdot}25.00Al_2O_3{\cdot}5.00La_2O_3{\cdot}2.07ZrO_2{\cdot}0.70MgO{\cdot}1.70SrO$.

Preparation and Characteristics of the Blends of Polyimide and Polybenzoxazole Having Imide Ring (주사슬에 이미드고리를 갖는 Polybenzoxazole과 Polyimide의 블렌드 제조 및 특성)

  • Wee, Doo-Young;Han, Jin-Woo;Choi, Jae-Kon
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.420-430
    • /
    • 2013
  • Polymer blends were prepared by solution blending poly(amic acid) (PAA) and poly(o-hydroxy amide) (PHA) having imide groups in the main chain. The polymers and their blends were characterized by using FTIR, FT NMR, DSC, TGA, SEM, XRD, UTM, and LOI. The solubility study revealed that the blends were readily soluble in aprotic solvents such as DMF, DMAc, DMSO, and NMP. The maximum weight loss of the blends occurred in the range of $578-645^{\circ}C$, and the maximum weight loss temperature increased with increasing the PHA content. The PBO/PI blends showed relatively high char yields (i.e. 56-69 wt%). The LOI values of the blends were in the range of 24.5-28.1% and increased with increasing the PHA content. The initial modulus and tensile strength of the blends increased by 57 to 121% and by 67 to 107%, respectively, compared to the values of PAA. Especially the initial modulus and tensile strength of the PHA/PAA=2/8(wt/wt) showed the highest values of 4.87 GPa and 108 MPa, respectively. The PHA domains of $0.03-0.1{\mu}m$ in their size were more or less uniformly dispersed. The interfacial adhesion between PAA and PHA was found to be good.

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method (Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성)

  • Moon, Jung-In;Cho, Hong-Chan;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.346-351
    • /
    • 2012
  • $Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at $500^{\circ}C$. A single crystalline phase of the $LiTi_2(PO_4)_3$(LTP) system was obtained at a calcination temperature above $650^{\circ}C$. The obtained powder was pelletized and sintered at $900^{\circ}C$ and $1000^{\circ}C$. The LTP sintered at $900{\sim}1000^{\circ}C$ for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at $900^{\circ}C$ for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of $4.50{\times}10^{-5}$ S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at $1000^{\circ}C$ decreased to $1.81{\times}10^{-5}$ S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at $900^{\circ}C$ for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to $300^{\circ}C$.

Design and Reliability Evaluation of 5-V output AC-DC Power Supply Module for Electronic Home Appliances (가전기기용 직류전원 모듈 설계 및 신뢰성 특성 해석)

  • Mo, Young-Sea;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.504-510
    • /
    • 2017
  • This paper presents an AC-DC power module design and evaluates its efficiency and reliability when used for electronics appliances. This power module consists of a PWM control IC, power MOSFETs, a transformer and several passive devices. The module was tested at an input voltage of 220V (RMS) (frequency 60 Hz). A test was conducted in order to evaluate the operation and power efficiency of the module, as well as the reliability of its protection functions, such as its over-current protection (OVP), overvoltage protection (OVP) and electromagnetic interference (EMI) properties. Especially, we evaluated the thermal shut-down protection (TSP) function in order to assure the operation of the module under high temperature conditions. The efficiency and reliability measurement results showed that at an output voltage of 5 V, the module had a ripple voltage of 200 mV, power efficiency of 73 % and maximum temperature of $80^{\circ}C$ and it had the ability to withstand a stimulus of high input voltage of 4.2 kV during 60 seconds.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Device Performances Related to Gate Leakage Current in Al2O3/AlGaN/GaN MISHFETs

  • Kim, Do-Kywn;Sindhuri, V.;Kim, Dong-Seok;Jo, Young-Woo;Kang, Hee-Sung;Jang, Young-In;Kang, In Man;Bae, Youngho;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this paper, we have characterized the electrical properties related to gate leakage current in AlGaN/GaN MISHFETs with varying the thickness (0 to 10 nm) of $Al_2O_3$ gate insulator which also serves as a surface protection layer during high-temperature RTP. The sheet resistance of the unprotected TLM pattern after RTP was rapidly increased to $1323{\Omega}/{\square}$ from the value of $400{\Omega}/{\square}$ of the as-grown sample due to thermal damage during high temperature RTP. On the other hand, the sheet resistances of the TLM pattern protected with thin $Al_2O_3$ layer (when its thickness is larger than 5 nm) were slightly decreased after high-temperature RTP since the deposited $Al_2O_3$ layer effectively neutralizes the acceptor-like states on the surface of AlGaN layer which in turn increases the 2DEG density. AlGaN/GaN MISHFET with 8 nm-thick $Al_2O_3$ gate insulator exhibited extremely low gate leakage current of $10^{-9}A/mm$, which led to superior device performances such as a very low subthreshold swing (SS) of 80 mV/dec and high $I_{on}/I_{off}$ ratio of ${\sim}10^{10}$. The PF emission and FN tunneling models were used to characterize the gate leakage currents of the devices. The device with 5 nm-thick $Al_2O_3$ layer exhibited both PF emission and FN tunneling at relatively lower gate voltages compared to that with 8 nm-thick $Al_2O_3$ layer due to thinner $Al_2O_3$ layer, as expected. The device with 10 nm-thick $Al_2O_3$ layer, however, showed very high gate leakage current of $5.5{\times}10^{-4}A/mm$ due to poly-crystallization of the $Al_2O_3$ layer during the high-temperature RTP, which led to very poor performances.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF