• Title/Summary/Keyword: Electronic and thermal properties

Search Result 1,071, Processing Time 0.03 seconds

Thermal and Mechanical Properties of Insulation Materials for Underground Power Cable (지중 전력케이블용 절연재료의 열적 특성 및 기계적 특성)

  • Lee, Kyoung-Yong;Lee, Kwan-Woo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.138-141
    • /
    • 2004
  • In this paper, we Investigated effects on impurities and water of semiconductive shield through a thermal, mechanical, and absorption experiment to estimate performance of insulating materials in power cable. Specimens had been prepared 22[kV], 154[kV] XLPE power cables and then were made of sheet form with XLPE and semiconductive shield with dimension of 0.4[mm] ~1.2[mm] of thickness from power cable. Heat capacity $({\Delta}H)$ and glass trasition temperature (Tg) of XLPE sheet were measured by DSC (Differential Scanning Calorimetry). We could know that thermal stabilities of 154[kV] are more excellent than 22[kV] from this experimental result. The strain of mechanical properties in 22[kV] and 154[kV] XLPE was 486[%], 507[%] and stress was 1.74$[kgf/mm^2]$, 1.80$[kgf/mm^2]$. The absorption contents of existing semiconductive shield were measured 710[ppm] to 1,090[ppm], and semiconductive shield of 22[kV] cable was measured 14,750[ppm] to 24,780[ppm]. We thermal and mechanical properties of 154[kV] could know more excellent than 22[kV] from this experimental result.

  • PDF

The Fabrication of Pt Micro Heater Using Aluminum Oxide as Medium Layer and Its Thermal Characteristics (알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 제작과 발열특성)

  • 노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.331-334
    • /
    • 1997
  • The electrical and physical charateristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analysed with increasing annealing temperature(400~80$0^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin finns was improved. But these properties of aluminum oxide and Pt thin finns on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analysed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater. active area was smaller size, Pt micro heater had better thermal characteristics. Temperature of Pt micro heater fabricated on membrane was up to 34$0^{\circ}C$ with 1.2watts of the heating power due to reduction of the external thermal loss.

  • PDF

Thermoelectric properties and microstructures of Mg2Si0.6Sn0.4-based thermoelectric materials (Mg2Si0.6Sn0.4 열전재료의 열전특성과 미세조직)

  • Jang, Jeong-In;Ryu, Byeong-Gi;Lee, Ji-Eun;Park, Su-Dong;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.53-53
    • /
    • 2018
  • Thermoelectric materials can convert directly waste heat to electricity and vice versa. The improvement of the thermoelectric efficiency strongly depends on the dimensionless figure of merit, $ZT=S^2{\sigma}T/{\kappa}$, where S is the Seebeck coefficient, ${\sigma}$ is the electrical conductivity, T is the absolute temperature, and ${\kappa}$ is the thermal conductivity. The thermal conductivity consists of the electronic contribution (${\kappa}_e$) and phonon contribution (${\kappa}_{ph}$). It is very challenge to increase the power factor, $S^2{\sigma}$ and to reduce the thermal conductivity simultaneously because the power factor and electronic thermal conductivity are coupled. One strategy is to decrease the phonon thermal conductivity. The phonon thermal conductivity can be decreased by controlling the grain size and structural defects such as dislocations and twinning. In order to achieve enhancements in thermoelectric efficiency, microstructures that can form numerous interfaces have been investigated intensively for controlling the transport of charge carriers and heat carrying phonons. In this presentation, we report the heterogeneous microstructure of $Mg_2Si_{0.6}Sn_{0.4}$ thermoelectric materials and investigation of its influence on thermoelectric properties.

  • PDF

Thermal Property of CNT/Cu Nanocomposite (Carbon Nanotube/Cu 나노복합체의 열적특성)

  • Hong, Youn-Jeong;Kim, Hye-Jin;Jung, Chung-Hun;Lee, Kyu-Mann
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.89-90
    • /
    • 2006
  • The CNTs are of great interest because of their unique complete properties of matter, especially, the large thermal conductivity (Thermal conductivity of CNTs ~ >2000W /mK vs. Thermal conductivity of Aluminum ~ >204W/mK). However, owing to the strong agglomeration cause by the vander wall's force, the CNTs are limited to applicate. In this study. we suggest a new method for CNTs dispersion. which are developed by the mechanical and chemical method. and then Cu was coated. This new process produces CNTs/Cu nanocomposite powders. The CNTs are homogeneously located within the Cu powders by chemical reaction. And the thermal properties of the CNTs/Cu nanocomposite were investigated.

  • PDF

Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape (고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

Study on the Thermal and Mechanical Properties of Elastic Epoxies (탄성에폭시의 열적.기계적 특성에 관한 연구)

  • Min, J.Y.;Lee, K.W.;Lee, K.Y.;Park, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.248-251
    • /
    • 2003
  • In this paper, it was experimented about thermal and mechanical insulation properties of a elastic epoxy specimen. We made elastic epoxy specimen adding a ratio of 0[phr], 20[phr], 35[phr] and 53[phr] with modifier to existing epoxy. Each specimen was absorbed by 25h, 196h, 361h 484h with water. In water-absorption state, it was experimented a change of heat flows by temperature of elastic epoxy and changes of thermal expansion coefficient. Also, a hardness-change of each specimen was experimented by change of water-absorption time. In this experiment DSC (Differential Scanning Calorimetry) and TMA (Thermomechanical Analysis) were used. A temperature range of DSC was changed from -0[$^{\circ}C$] to 200[$^{\circ}C$], TMA was changed from -0[$^{\circ}C$] to 350[$^{\circ}C$]. In addition, we investigated structural analysis of water absorbed specimen using SEM (Scanning electron microscope).

  • PDF

Thermal and Electronic Properties of Exfoliated Metal Chalcogenides

  • Kim, Jong-Young;Choi, Soon-Mok;Seo, Won-Seon;Cho, Woo-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3225-3227
    • /
    • 2010
  • The thermal conductivity of layered metal chalcogenides such as $MT_2$ (M = Mo, W; T = S, Se) shows a marked decrease after exfoliation and subsequent restacking process. Random stacking of two-dimensional crystalline sheets circumvents thermal conduction pathways along a longitudinal direction, which results in a reduction in thermal conductivity. $WS_2$ and $WSe_2$ compounds retain p-type conducting behavior after exfoliation and restacking with decreased electrical conductivity due to the change in carrier concentration. $MoSe_2$ compound exhibits metallic behavior < $130^{\circ}C$ with a small Seebeck coefficient, which results from metastable 1T-$MoSe_2$ structure of the restacked phase.

A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test (가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

Effect of RTA on the interfacial Properties of Top Electrodes on $(Ba_{0.5}Sr_{0.5})TiO_3$ ($(Ba_{0.5}Sr_{0.5})TiO_3$ 박막의 상부전극 RTA에 따른 계면 특성 변화)

  • Jeon, Jang-Bae;Kim, Dyeok-Kyu;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.740-742
    • /
    • 1998
  • In this paper, we described the effect of rapid thermal annealing on the electrical properties of interfacial layer between various top electrodes and $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films. BST thin films were fabricated on Pt/TiN/$SiO_2$/Si substrate by RF magnetron sputtering technique. AI, Ag, and Cu films for the formation of top electrode were deposited on BST thin films by thermal evaporator. Top electrodes/BST/Pt capacitor annealed with rapid thermal annealing at various temperature. In $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films with Cu top electrode annealed at $500^{\circ}C$, the dielectric constant was measured to the value of 366 at 1.2 [kHz] and the leakage current was obtained to the value of $5.85{\times}10^{-7}\;[A/cm^2}$ at the forward bias of 2 [V].

  • PDF