• Title/Summary/Keyword: Electronic Warfare(EW)

Search Result 28, Processing Time 0.021 seconds

A Method for Reduction of Spurious Signal in Digital RF Memory (디지털 고주파 기억 장치에서의 스퓨리어스 신호 저감 방법)

  • Kang, Jong-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.669-674
    • /
    • 2011
  • In this paper, a method for reduction of spurious signal in Digital RF Memory(DRFM) is proposed. Spurious response is a major performance issue of DRFM. This method is based on mixing a random phase LO signal into input IF signal and sampling it. The random phase LO signal is generated by high speed phase shifting characteristic of Direct Digital Synthesizer(DDS). Through this technique, we achieved an enhancement of 5~10 dB of spurious response.

Design and Fabrication of Reflective Array Type Wideband SAW Dispersive Delay Line

  • Choi Jun-Ho;Yang Jong-Won;Nah Sun-Phil;Jang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 2006
  • A reflective array type surface acoustic wave(SAW) dispersive delay line(DDL) with high time-bandwidth at the V/UHF-band is designed and fabricated for compressive receiver applications. This type of the SAW DDL has the properties of the relative bandwidth of 20 %, the time delay of 49.89 usec, the insertion loss of 38.5 dB and the side lobe rejection of 39 dB. In comparison with a commercial SAW DDL, the insertion loss, amplitude ripple and side lobe rejection are improved by $1.5dB{\pm}0.6dB$ and 4 dB respectively. Using the fabricated SAW DDL, the prototype of the compressive receiver is developed. It is composed of RF converter, fast tunable LO, chirp LO, A/D converter, signal processing unit and control unit. This prototype system shows a fine frequency resolution of below 30 kHz with high scan rate.

A Study on Estimation of VHF Datalink Range (VHF 데이터통신 통달거리 예측 연구)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.55-62
    • /
    • 2008
  • An Estimation of VHF datalink range for EW(Electronic Warfare) equipment in the sea environment was studied to predict the datalink range between transmitting and receiving station. We consider refraction and reflection in addition to the basic radar equation. The reflection especially includes propagation factor in case of spherical earth as well as flat earth. The estimation result can predict the real datalink range within 5% error.

A Study on Estimation and Factors of VHF Data Link Range (VHF 데이터통신 통달거리 예측 및 요소 분석)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.413-420
    • /
    • 2010
  • An Estimation of VHF data link range for EW(Electronic Warfare) equipment in the sea environment was studied to predict the data link range between transmitting and receiving station. The theoretical estimation predicts within 3% error with actual measurement of VHF data link range at sea. Data link range factors including refraction and reflection are added in the basic wave propagation equation. The effect of refraction and reflection to the range is analysed with quantity level.

A Study on the Analysis of Broadband Direction finding Antenna on Aircraft (항공기 탑재된 광대역 방향 탐지용 안테나 분석 연구)

  • Baek, Jong-Gyun;Ji, Sung-Hwan;Mun, Byeonggwi;Lee, Kyung-Won;Kim, Dong-Gyu;Lee, Wang-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.89-95
    • /
    • 2018
  • In this paper, we analyze the antenna performance changes caused by the aircraft structure, diffraction and reflection, when the direction finding antenna used in the aircraft is mounted on the aircraft. Direction finding antenna is an antenna that receives radar threat signal in the direction finding device of aircraft electronic warfare system. Recently, because various antenna are mounted on an aircraft, various analyzes such as antenna performance and interference analysis are required. Therefore, the electromagnetic analysis was carried out by installing a broadband direction finding antenna with 50% bandwidth on simulated aircraft, and the direction finding performance was analyzed by comparing the single antenna performance with the performance mounted on the aircraft. The analyzed direction finding accuracy was $6.47^{\circ}$ RMS and predicted to be suitable as an antenna for aircraft direction finding antenna.

Automatic Intrapulse Modulated LPI Radar Waveform Identification (펄스 내 변조 저피탐 레이더 신호 자동 식별)

  • Kim, Minjun;Kong, Seung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In electronic warfare(EW), low probability of intercept(LPI) radar signal is a survival technique. Accordingly, identification techniques of the LPI radar waveform have became significant recently. In this paper, classification and extracting parameters techniques for 7 intrapulse modulated radar signals are introduced. We propose a technique of classifying intrapulse modulated radar signals using Convolutional Neural Network(CNN). The time-frequency image(TFI) obtained from Choi-William Distribution(CWD) is used as the input of CNN without extracting the extra feature of each intrapulse modulated radar signals. In addition a method to extract the intrapulse radar modulation parameters using binary image processing is introduced. We demonstrate the performance of the proposed intrapulse radar waveform identification system. Simulation results show that the classification system achieves a overall correct classification success rate of 90 % or better at SNR = -6 dB and the parameter extraction system has an overall error of less than 10 % at SNR of less than -4 dB.

Front-End Module of 18-40 GHz Ultra-Wideband Receiver for Electronic Warfare System

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.188-198
    • /
    • 2018
  • In this study, we propose an approach for the design and satisfy the requirements of the fabrication of a small, lightweight, reliable, and stable ultra-wideband receiver for millimeter-wave bands and the contents of the approach. In this paper, we designed and fabricated a stable receiver with having low noise figure, flat gain characteristics, and low noise characteristics, suitable for millimeter-wave bands. The method uses the chip-and-wire process for the assembly and operation of a bare MMIC device. In order to compensate for the mismatch between the components used in the receiver, an amplifier, mixer, multiplier, and filter suitable for wideband frequency characteristics were designed and applied to the receiver. To improve the low frequency and narrow bandwidth of existing products, mathematical modeling of the wideband receiver was performed and based on this spurious signals generated from complex local oscillation signals were designed so as not to affect the RF path. In the ultra-wideband receiver, the gain was between 22.2 dB and 28.5 dB at Band A (input frequency, 18-26 GHz) with a flatness of approximately 6.3 dB, while the gain was between 21.9 dB and 26.0 dB at Band B (input frequency, 26-40 GHz) with a flatness of approximately 4.1 dB. The measured value of the noise figure at Band A was 7.92 dB and the maximum value of noise figure, measured at Band B was 8.58 dB. The leakage signal of the local oscillator (LO) was -97.3 dBm and -90 dBm at the 33 GHz and 44 GHz path, respectively. Measurement was made at the 15 GHz IF output of band A (LO, 33 GHz) and the suppression characteristic obtained through the measurement was approximately 30 dBc.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.