• Title/Summary/Keyword: Electronic Vehicle

Search Result 1,200, Processing Time 0.027 seconds

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.219-222
    • /
    • 2008
  • Recently, parking problems for an autonomous vehicle have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing a autonomous parking system. We first design an optimal parking path for the slant space and present the simulation results of the fuzzy logic based parking system.

  • PDF

Implementation of a Dashcam System using a Rotating Camera (회전 카메라를 이용한 블랙박스 시스템 구현)

  • Kim, Kiwan;Koo, Sung-Woo;Kim, Doo Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.34-38
    • /
    • 2020
  • In this paper, we implement a Dashcam system capable of shooting 360 degrees using a Raspberry Pi, shock sensors, distance sensors, and rotating camera with a servo motor. If there is an object approaching the vehicle by the distance sensor, the camera rotates to take a video. In the event of an external shock, videos and images are stored in the server to analyze the cause of the vehicle's accident and prevent the user from forging or tampering with videos or images. We also implement functions that transmit the message with the location and the intensity of the impact when the accident occurs and send the vehicle information to an insurance authority with by linking the system with a smart device. It is advantage that the authority analyzes the transmitted message and provides the accident handling information giving the user's safety and convenience.

A Key-Frame Extraction Method based on HSV Color Model for Smart Vehicle Management System (스마트 차량 관리 시스템을 위한 HSV 색상모델 기반의 키 프레임 추출 기법)

  • Kwon, Young-Wook;Jung, Se-Hoon;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.595-604
    • /
    • 2013
  • Currently, registered number of imported vehicles is increasing rapidly over the years. Accordingly, environment improvements of vehicle maintenance company for maintenance of luxury vehicle such as imported vehicle are continuously being made. In this paper, we propose a key frame extraction method based on HSV color model for smart vehicle management system implementation to offer for customer reliability of maintenance vehicle. After automatically recognize the license plates of the vehicle using vehicle license plate recognition system when the vehicle come in the car center, we check the repair history and request of the vehicle based on it. We implement mobile services which provide extracted key frame images to the user after extract key frames from vehicle repair video. In addition, we verify the superiority of key frame extraction method by applying a smart vehicle management system. Finally, we convert the RGB color to HSV color to improve the performance of proposed key frame extraction scheme. As a result, we confirmed that our scheme is more excellence about 30% in terms of recall than RGB color model from the performance evaluations.

Implementation of Integrated Controller of ACC/LKS based on OSEK OS (OSEK OS 기반 ACC/LKS 통합제어기 구현)

  • Choi, Dan-Bee;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • This paper implements an integrated vehicle chassis system of ACC(Adaptive Cruise Control) and LKS(Lane Keeping System) based on OSEK OS to vehicle operating system and analyzes its performance through experiments. In recent years active safety and advanced driver assistance system has discussed to improve safety of vehicle. Among the rest, We integrate ACC that controls longitudinal velocity of vehicle and LKS that assists a vehicle in maintaing its driving lane, then implement integrated control system in vehicle. Implemented control system uses OSEK/VDX proposed standard, which is aiming at reusability and safety of software for vehicle and removal hardware dependence of application software. Redesigned control system based on OSEK OS, which is supported by OSEK/VDX, can manage real-time task, process interrupt and manage shared resource. We show by results performed EILS(ECU-In-the-Loop Simulation) that OSEK OS-based integrated controller of ACC and LKS is equivalent conventional integrated controller of ACC and LKS.

Side Looking Vehicle Detection Radar Using A Novel Signal Processing Algorithm (새로운 신호처리 알고리즘을 이용한 측방설치 차량감지용 레이다)

  • Kang Sung Min;Kim Tae Young;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.1-7
    • /
    • 2004
  • We have developed a 24GHz side-looking vehicle detection radar. A 24GHz front-end module and a novel signal processing algorithm have been developed for speed measurement and size classification of vehicles in multiple lanes. The system has a fixed antenna and FMCW processing module. This paper presents the background theory of operation and shows some measured data using the algorithm. The data shows that measured velocity of the passing vehicle is within the accuracy of 95% in single lane and the velocity of the vehicles in two lanes is within the accuracy of 90% by using variable threshold estimation. The classification of vehicle size as small, medium and large has been measured with 89% accuracy.

Vision Sensing for the Ego-Lane Detection of a Vehicle (자동차의 자기 주행차선 검출을 위한 시각 센싱)

  • Kim, Dong-Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-141
    • /
    • 2018
  • Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

In-Vehicle Network Technologies (차량 내 네트워크 기술)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.518-521
    • /
    • 2018
  • IVN (in-vehicle network) connects various electronic modules in the vehicles. It requires real-time, low noise, high reliability, and high flexibility. It includes CAN (controller area network), CAN-FD (CAN flexible data rate), FlexRay, LIN (local interconnect network), SENT (single edge nibble transmission), and PSI5 (peripheral sensor interface 5). In this paper, their operation priciples, target applications, and pros and cons are explained.

Dynamic Charncteristics for Laternl Strong Wind on Bimodal Tram (바이모달 트램의 횡풍에 대한 동적특성 해석)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Kim, Myoung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.979-983
    • /
    • 2008
  • A bi-modal tram can travel in not only dedicated way but also road so as to reduce construction costs and increase vehicle operation efficiency, whose passenger capacity is 2,500 to 7,000 persons/direction/hour. A bi-modal has an electronic guidance system that knows the location and route of the vehicle, and uses magnetic markers in the road surface for reference. Since a bi-modal tram will be operated in the downtown area, there is some possibility that strong wind occurred between high-rise buildings can produce sudden lateral movement (displacement) of the vehicle to influence its automatic operation controlled by electronic guidance system. For bi-modal tram in the automatic operation mode, lateral movements occurred by strong wind were calculated and analyzed in the dynamic model developed by using the ADAMS. Some useful relations among vehicle speeds, wind speeds, and lateral behaviors were discussed in this paper.

  • PDF

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.