• 제목/요약/키워드: Electronic Steering

검색결과 169건 처리시간 0.037초

S-대역 4×1 광대역 위상배열안테나에 관한 연구 (4×1 Wideband Phase Array Antenna at S-Band)

  • 윤나내;하반남;서철헌
    • 한국전자파학회논문지
    • /
    • 제29권1호
    • /
    • pp.20-23
    • /
    • 2018
  • 본 논문에서는 S-대역에서 동작하는 광대역 특성을 가지는 aperture coupled feed patch 구조를 설계하고, $4{\times}1$로 배열하였다. 설계한 배열안테나는 다른 layer 기판의 커플링을 통하여 광대역 특성을 갖는다. 제안한 안테나는 2개의 층으로 이루어져 있고, 위층은 4개의 방사패치, 아래층은 aperture와 접지 면으로 이루어져 있다. 제안한 배열안테나를 측정한 결과, 3.2 GHz를 중심으로 약 15 %의 광대역 특성을 갖는 것을 확인하였다. 빔 조향을 위해, 제안한 배열 안테나에 위상천이기를 적용하였다. 제안한 위상배열안테나는 제작 및 측정하였다. 측정결과, 위상차를 통하여 약 $35^{\circ}$까지 빔 조향이 가능한 것을 확인하였다.

콤바인 HST 전자제어시스템 개발 (I) (Development of a Combine HST Electronic Control System (I) - Indoor Tests for Control Characteristics -)

  • 서신원;허윤근;이제용;이창규
    • 농업과학연구
    • /
    • 제37권2호
    • /
    • pp.295-302
    • /
    • 2010
  • Electro-hydraulic transmission (HST) and an electronic control system was designed, and performance of the components were investigated through indoor tests. When input values for HST swash plate control were given at 3 levels (5, 10, 13 degrees) in forward and reverse directions, the errors were less than 0.6 degrees. Response time was in ranges of 0.14 ~ 0.16 s and 0.16 ~ 0.2 s for forward and reverse direction controls while driving, and the values were 0.23 ~ 0.25 s and 0.18 ~ 0.23 s at static condition, respectively. Similar experiments for left and right steering resulted errors less than 0.5 degrees. Resonse time was in ranges of 0.16 ~ 0.22 s and 0.11 ~ 0.23 s for left and right turns while driving, and the values were 0.07 ~ 0.21 s and 0.09 ~ 0.14 s at static condition, respectively. From frequency response experiments, control system appeared to follow sine waves appropriately at frequencies less than 0.8 Hz with gain of 0.11 dB and 0.09 dB for forward and reverse direction controls, respectively, and the gain decreased above the frequency. Phase difference showed a gradual increase and were less than 45 degree up to 0.8 Hz. Similar experiments for left and right streering showed that the control system appeared to follow sine waves appropriately at frequencies less than 0.8 Hz with gain of 0.28 dB and 0.26 dB for left and right steering controls, respectively, and the gain decreased above the frequency. Phase difference showed a gradual increase and were less than 45 degree up to 0.8 Hz, which was the same as for the forward and reverse controls.

On Diagonal Loading for Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

  • Lin, Jing-Ran;Peng, Qi-Cong;Shao, Huai-Zong
    • ETRI Journal
    • /
    • 제29권1호
    • /
    • pp.50-58
    • /
    • 2007
  • Robust adaptive beamforming based on worst-case performance optimization is investigated in this paper. It improves robustness against steering vector mismatches by the approach of diagonal loading. A closed-form solution to optimal loading is derived after some approximations. Besides reducing the computational complexity, it shows how different factors affect the optimal loading. Based on this solution, a performance analysis of the beamformer is carried out. As a consequence, approximated closed-form expressions of the source-of-interest power estimation and the output signalto-interference-plus-noise ratio are presented in order to predict its performance. Numerical examples show that the proposed closed-form expressions are very close to their actual values.

  • PDF

PD제어기를 이용한 AGV의 경로추종에 관한 연구 (A Study on the Path-tracking of an Automated Guided Vehicle Using Digital PD Controller)

  • 이종성;원영진;성홍석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.1037-1038
    • /
    • 2006
  • This paper treats the guide path tracking problem of an experimental automated guided vehicle. An experimental guide path is made of aluminium foil which has width of 2[cm]. A digital Proportional and Derivative controller is used to manipulate the steering system and it is verified by laboratory experiments that the designed AGV tracks the guide path withen the range of 3.2[cm] deviation.

  • PDF

Localization of Subsurface Targets Based on Symmetric Sub-array MIMO Radar

  • Liu, Qinghua;He, Yuanxin;Jiang, Chang
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.774-783
    • /
    • 2020
  • For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.

메카트로닉 열차 연구동향 (Mechatronic Train for Next Generation)

  • 곽재호;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.35-42
    • /
    • 2006
  • This paper presents a brief overview of the concepts, achievements and challenges relating to the use of electronic and computer control for railway vehicles in the aspect of mechatronic design. It can provides the rail vehicles of tomorrow must be more cost effective, energy efficient, and dynamic performance. The main emphasis in this paper will be upon the use of active control for suspension and steering for new approaches of incorporation of sensors, controllers, and actuators. They can make vehicle designers to take advantages optimizing mechanics and electronics jointly which are not possible with a purely mechanical approach.

  • PDF

차량자세제어 최악상황 개발 및 UCC HILS 시스템 기반 성능 평가 (Worst-case Development and Evaluation for Vehicle Dynamics Controller in UCC HILS)

  • 김진용;정도현;정창현;최형진
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.30-36
    • /
    • 2011
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA Sine with dwell steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes useful worst case based upon the existing worst case scenarios mentioned above and worst case evaluation for vehicle dynamic controller in simulation basis and UCC HILS. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.

요우모멘트를 통한 주행안정성 향상 제어 알고리즘에 관한 연구 (A Study on Improving Driving Stability System by Yaw Moment Control)

  • 박중현;김순호
    • 한국정보통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.392-397
    • /
    • 2006
  • 본 논문에서는 ESP와 4WS차량의 동적성능에 관한 연구와 차량이 불안정 영역으로의 주행 시 안정영역으로의 거동으로 할 수 있게 하는 차량의 주행안정성 향상에 관한 연구를 수행하였다. 고속으로 주행하는 차량이 조향과 동시에 가${\cdot}$감속을 하는 경우 관련된 변수로는 종방향 및 횡방향의 속도변화, 요우잉 등을 들 수 있으며, 이 변수들은 타이어 특성, 차량의 중량, 제동력, 조향각등에 따른 동역학적 관계식들로 표현 할 수 있다. 본 연구는 위와 같은 제동${\cdot}$조향장치들을 제어하여, 차량의 주행 중 위급상황 시 탁월한 성능을 발휘 할 수 있는 시스템에 관하여 고찰하고, 주행시 안정성향상을 위한 제어시스템 알고리즘개발을 통하여 운전상황을 안전하게 하기 위함이다.

저상굴절버스 조향시스템 전자제어장치의 테스트플랫폼 구축에 관한 연구 (A Study on a Test Platform for AWS (All-Wheel-Steering) ECU (Electronic Control Unit) of the Bi-modal Tram)

  • 이수호;문경호;박태원;김기정;최성훈;김영모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1051-1059
    • /
    • 2008
  • In the development process of an ECU (Electrical Control Unit), numerous tests are necessary to evaluate the performance and control algorithm. The vehicle based test is expensive and requires long time. Also, it is difficult to guarantee the safety of the test driver. To overcome the various problems faced in the development process, the ECU test has been done using HIL (Hardware In the Loop). The HIL environment has the actual hardware including an ECU and a virtual vehicle model. In this paper, the test platform environment is devloped for the AWS ECU black box test. The test platform is built on HIL (Hardware In the Loop) architecture. Using the developed test platform, the control algorithm of the AWS ECU can be evaluated under the virtual driving condition of the bi-modal tram. Driving conditions, such as a front steering angle and vehicle velocity, are defined through the PC (Personal Computer) input. Input signals are transformed to electrical signals in the PC. These signals become the input conditions of the AWS ECU. The AWS ECU is stimulated by arbitory input conditons, and responses of the system are observed.

  • PDF

비전 센서를 이용한 AGV의 주행정보 획득에 관한 연구 (A Study for Detecting AGV Driving Information using Vision Sensor)

  • 이진우;손주한;최성욱;이영진;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2575-2577
    • /
    • 2000
  • We experimented on AGV driving test with color CCD camera which is setup on it. This paper can be divided into two parts. One is image processing part to measure the condition of the guideline and AGV. The other is part that obtains the reference steering angle through using the image processing parts. First, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, AGV knows the driving conditions of AGV. After then using of those information, AGV calculates the reference steering angle changed by the speed of AGV. In the case of low speed, it focuses on the left/right error values of the guide line. As increasing of the speed of AGV, it focuses on the slop of guide line. Lastly, we are to model the above descriptions as the type of PID controller and regulate the coefficient value of it the speed of AGV.

  • PDF