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Robust adaptive beamforming based on worst-case 
performance optimization is investigated in this paper. It 
improves robustness against steering vector mismatches 
by the approach of diagonal loading. A closed-form 
solution to optimal loading is derived after some 
approximations. Besides reducing the computational 
complexity, it shows how different factors affect the 
optimal loading. Based on this solution, a performance 
analysis of the beamformer is carried out. As a 
consequence, approximated closed-form expressions of the 
source-of-interest power estimation and the output signal-
to-interference-plus-noise ratio are presented in order to 
predict its performance. Numerical examples show that 
the proposed closed-form expressions are very close to 
their actual values. 
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I. Introduction 

It is well known that the performance of adaptive 
beamforming is very sensitive to steering vector mismatches 
[1], [2]. In the presence of such errors, the beamformer tends to 
misinterpret the desired source as interference and suppress it. 
This phenomenon is the so-called signal cancellation. So far 
many approaches, referred to as robust adaptive beamforming 
(RABF), have been proposed to improve the performance of 
adaptive beamforming [2]-[13]. Among these approaches, 
diagonal loading is widely used for its simplicity [5]-[13]. 
However, how to select the loading level remains a crucial and 
open problem. If this parameter is not chosen properly, the 
robustness of the diagonal loading approach may be 
insufficient. 

In traditional opinion, the loading level chosen should be 
higher than the noise power but lower than the lowest 
interference eigenvalue. Most of the early suggested methods 
are rather ad hoc in choosing the loading. For example, it can 
be set at 5 to 10 dB above the noise power or it can be fixed 
equal to the standard deviation of the diagonal entries of the 
covariance matrix. In another study, the loading is calculated 
simply according to the eigenvalues of the covariance matrix 
(see [5] and the references therein). These methods definitely 
provide improved robustness. However, since the chosen 
loadings are not directly related to the steering vector 
uncertainty, they are not guaranteed to be always optimal when 
the uncertainty changes. As a result, the robustness 
improvement may be insufficient. 

Recently, a few methods [6]-[11] have been proposed which 
determine the optimal loading by defining the so-called 
uncertainty set and optimizing the worst-case performance. For 
this reason, these methods are referred to as worst-case RABFs 
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(W-RABF) in this paper. Adaptively choosing the loading 
according to the steering vector uncertainty, W-RABF tends to 
outperform the ad hoc approaches previously mentioned. 
However, optimal loading is still solved mainly by iteration at 
present; using, for example, the second-order cone program 
(SOCP) method [6] and Newton’s method [7]-[9]. The iterative 
methods may suffer from slow convergence or non-
convergence unless the initial point for searching is selected 
very carefully. In these slow convergence or non-convergence 
cases, a heavy computational burden is inevitable. Moreover, 
the iterative methods help little in revealing what factors can 
affect the optimal loading and how to affect it. Some advances 
in this field have been achieved in [10], in which a closed-form 
solution to the optimal weight vector of W-RABF, instead of 
the optimal loading of it, is presented in the general-rank signal 
case. In [10], the diagonal loading problem is turned into a 
generalized eigenvalue problem. Although it is very simple and 
computationally efficient, it does not tell clearly how different 
factors affect the optimal loading. Since the essence of W-
RABF is to improve robustness by imposing a diagonal matrix 
onto the covariance matrix, it is still useful and necessary to 
study how to determine the optimal loading according to such 
parameters as the steering vector uncertainty, the noise power, 
the source power, and so on. 

In this paper, W-RABF is investigated further and a closed-
form solution to optimal loading is suggested after some 
approximations. Besides its simplicity and low computational 
cost, the solution reveals how different factors affect optimal 
loading. Then, a performance analysis of W-RABF is carried out, 
concentrating mainly on the source of interest (SOI) power 
estimation and the signal-to-interference-plus-noise ratio (SINR). 
Approximated closed-form expressions are also presented to 
predict its performance. Numerical examples demonstrate that 
the proposed closed-form expression of optimal loading is very 
close to its actual value. Moreover, the results of the performance 
analysis, based on the approximated solution to optimal loading, 
predict the behavior of W-RABF very accurately. 

It should be pointed out here that, besides steering vector 
mismatches, errors in the covariance matrix, namely, the so-
called finite sample effects, may lead to a clear performance 
degradation of W-RABF. Diagonal loading can also improve 
robustness against this kind of error [5], [10], [11]. Therefore, 
when determining the optimal loading, both the steering vector 
mismatch and the finite sample effect can be considered in 
order to achieve better performance. However, as shown in 
[10]-[12] and the studies referenced therein, this makes sense 
only when the two errors are of the same order of magnitude. 
Since the magnitude of finite sample effects is typically O(1/N), 
where N is the number of snapshots, it can be ignored in most 
practical situations, compared with steering vector mismatches. 

For this reason, only steering vector mismatches are considered 
in this paper, under the assumption that the true covariance 
matrix is available. The problem of how to determine the 
loading when both errors are considered will be addressed in 
our next work [11]. 

The paper is organized as follows. The background of the 
signal model and W-RABF is presented in section II. In section 
III, a closed-form solution to optimal loading is suggested after 
some approximations. A performance analysis concentrating 
on SOI power estimation and SINR is presented in section IV. 
Section V presents numerical simulation results, and 
conclusions are drawn in section VI. 

II. Background 

Consider an array of M sensors and let R denote the 
covariance matrix of the array output vector.  
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where σs
2 and σJk

2, k = 1, 2,…, K, are the powers of the SOI 
and the K uncorrelated interference signals, a and aJ k ∈ C M × 1 
denote the corresponding steering vectors, σn

2 is the power of 
the spatially white noise, J is the interference-plus-noise matrix, 
and (·)H stands for the complex conjugate transpose. In practice, 
R is generally approximated by 
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where N is the number of snapshots and x(n) ∈ C M × 1 is the 
array output vector at the time index n. Here, assume that N is 
large enough that the finite sample effect can be ignored. 

The W-RABF can be described as [6], [7] 
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where ã ∈ C M×1 is the presumed value of a and ε is the steering 
vector distortion bound with ε2 < ||ã||2 to avoid a trivial solution. 

It is easy to prove [6], [7] that (3) is equivalent to 
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Obviously, it belongs to the diagonal loading approach in 
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which ξ is the loading level. In (5), only the parameter of ξ is 
unknown and it can be determined by inserting (5) into the 
constraints in (4) as  
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Unfortunately, this task is by no means easy. Many existing 
methods [6]-[9] solve it by iteration. The iterative methods, 
however, are computationally demanding and give little 
information regarding how different factors affect optimal 
loading. In the next section, an approximated closed-form 
solution will be suggested. 

III. Optimal Loading of W-RABF 

Applying the matrix inverse lemma and using the result of 
(1), it follows that 
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Perform the eigenvalue decomposition of J as 
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where Γ = diag(γ1, γ2,…, γM) is the eigenvalue matrix of J with 
the eigenvalues arranged in descending order: γ1 > γ2 >…> γK > 
γ(K+1) = γ(K+2) =…= γM = σn

2, V = [v1, v2,…, vM] with vm∈C M × 1 
the eigenvector corresponding to γm, m = 1, 2,…, M, 
respectively, ΓJ = diag(γ1, γ2,…, γK), VJ = [v1, v2,…, vK], and Vn 
= [v(K+1), v(K+2),…, vM]. 

Assume that all the K interference signals are outside the 
main beam of the array. The projection of the SOI steering 
vector onto the interference subspace is small. Further assume 
that the powers of the interference signals are large compared 
with that of the spatially white noise (γk >> σn

2, k = 1, 2,…, K). 
Under these assumptions, using methods similar to those in [12] 
and [14], it follows that  
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where an = [v(K+1),…, vM]H a = Vn
H a, ãn = [v(K+1),…, vM]H ã = 

Vn
Hã, ||an||2 = an

Han, and p is a positive integer. 
Inserting (5), (7), and (9) into (6), after some direct 

derivations, it follows that 
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where scale L is given by 
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Let an = ãn + Δn and when the steering vector error, ε, is small, 
it follows that ||an||2 ≈ ||ãn||2 and ||Δn||2 is negligible compared 
with ||an||2 and ||ãn||2. Consequently, 
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Eliminating the second-order terms of Δn in (11), it follows that  
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This approximation is reasonable in practice. First, RABF 
based on diagonal loading can no longer compensate for the 
steering vector mismatch when the mismatch exceeds a 
specific threshold [12]. Second, the larger the distortion bound 
ε is, the poorer capability RABF will possess in rejecting 
interference signals adaptively [2], [9]. In short, the use of 
diagonal loading in RABF is only advisable for small and 
middle-sized ε.  

A simplified version of (10) can be obtained by inserting (12) 
into (10) as  
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Thus, (6) is approximated by (13) from which two simple 
closed-form solutions (a positive one plus a negative one) to 
optimal loading can be easily found. Applying the eigenvalue 
decomposition of R and using similar methods to those in [8] 
and [9], it can be proved that (6) has a unique positive solution; 
therefore, the optimal loading is  
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The following points are straightforward. First, compared 
with the iterative methods, (14) reveals how different factors 
affect the optimal loading, namely, ξo depends on the noise 
level σn

2, the SOI power σs
2, the steering vector distortion 

bound ε, and the norm of the steering vector projection onto the 
subspace orthogonal to the interference subspace, that is, ||an||2 
and ||ãn||2. Second, ξo increases as ε increases. When ε 
approaches ||ãn||, an infinite loading is required. Consequently, 
the W-RABF turns to a data-independent beamformer and no 
adaptive capability of rejecting interference signals is achieved. 
On the other hand, when ε decreases to zero, ξo approaches 
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zero asymptotically and then the W-RABF turns to the 
standard adaptive beamforming (SABF). 

It should be noted that, in (14), σn
2 and ε are known or can be 

estimated in advance. For example, σn
2 can be measured 

directly in the source and interference free case. When the 
source and interference are present, it still can be estimated 
simply from those eigenvalues associated with the noise 
subspace of R [2]. Where ε is concerned, a coarse knowledge 
regarding the propagation channel, which is usually available, 
can be exploited to determine it properly [10].  

On the other hand, σs
2 is unknown in (14) and there seems to 

be no simple method to estimate σs
2 from the interference and 

noise contaminated data directly, without knowledge of the 
optimal weight vector in advance. So there may be some 
difficulties in applying (14) in practice if σs

2 is unavailable. 
Additionally, σs

2, ||an||2 is unknown. However, when ε is small, 
as mentioned in (11), ||an||2 can be replaced by ||ãn||2. Combined 
with the fact that the projection of the SOI steering vector onto 
the interference subspace is small, further simplifications can 
be made, namely, ||ãn||2 ≈ ||ãn||2 ≈ M. Thus, the following 
simpler result can be found: 
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On the basis of (14) or (15), the corresponding closed-form 
optimal weight vector of W-RABF is 
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Note that another closed-form solution to the optimal weight 
vector of W-RABF was proposed in [10]. Since it is the 
solution to a generalized eigenvalue problem, the vector is 
referred to as wGE in this paper, which is given as 

 1{ ( )}H
GE ς−= −w R aa IP ,          (17)  

where P{·} denotes the principle eigenvector of the matrix 
between the brackets and ς is the distortion bound of the signal 
matrix associated with ε.  

Regarding wo and wGE, the following obvious conclusions 
can be drawn. First, in this paper, the traditional problem of 
solving the optimal loading ξo is studied, and then the optimal 
weight vector wo is determined. However, in [10], the authors 
address the W-RABF as a generalized eigenvalue problem and 
they get another expression of the weight vector wGE. Second, 
wo is an approximated closed-form solution while wGE is an 
actual one. However, as will be shown in the next section, the 
performance of wo almost coincides with that of wGE, implying 

that wo approximates wGE very accurately with some possible 
scale ambiguities. Third, wo is suitable for rank-one signal 
models only, while wGE is suitable for general-rank signal 
models. Fourth, although the expressions of wo and wGE are 
obviously different, they both belong to the diagonal loading 
approach. In wo, a positive loading ξoI is applied to R, while in 
wGE, a negative loading –εI is applied to ããH. Finally, wo and 
wGE consume comparable computational complexity requiring 
O(M3) flops. Applying some fast online implementations such 
as those methods in [10] can reduce it to O(M2) flops. In 
contrast, the iterative methods are computationally more 
demanding. For example, the SOCP method requires O(ρM  3) 
flops with ρ the number of iterations. Newton’s method, 
although computationally more efficient than the SOCP 
method, consumes at least 100M flops more than the proposed 
method.  

IV. Performance Analysis 

The SOI power estimation and the output SINR are used 
here to measure the performance of the W-RABF. 

1. SOI Power Estimation 

Usually the term wo
HRwo is used to estimate σs

2 as  
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Applying the previously mentioned approximations and after 
some direct algebraic manipulations, it follows that 
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Inserting (14) into (19), it follows that  
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Given (||ãn|| – ε)2 ≈ (||an|| – ε)2 ≤ ||an||2 for small steering 
vector errors, it can be concluded that the W-RABF is likely to 
overestimate the SOI power: .ˆ 22

ss σσ > If there is no steering 
vector error, it follows that .ˆ 22

ss σσ ≈  In the high signal-to-
noise ratio (SNR) scenarios, (σs

2 >> σn
2) is consistent with the 

fact that the W-RABF will then turn to SABF. When ε 
increases, 2ˆsσ  increases, too. 

On the basis of (20), the following new SOI power estimator 
can be presented to eliminate the overestimation: 
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Fig. 1. Performance comparisons based on snapshot number N at Δs = +2o and ε = 1.8017. 
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There may be some contradictions. That is, to estimate σs
2, 

one must calculate ξo and wo first. On the other hand, if one 
wants to calculate ξo and wo according to (14) and (16), 
respectively, the knowledge of σs

2 is required, so the practical 
value of (21) may be restricted. However, it still makes sense in 
theoretical analysis. For example, it can be used to show 
whether (14) is an accurate approximation of the actual optimal 
loading. If not, an obvious difference between 2ˆ̂

sσ and σs
2 will 

be observed at least in simulation. 

2. Signal-to-Interference-Plus-Noise Ratio 

The SINR is generally computed as 
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Inserting (7), (9), and (12) into (22), it follows that 
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It is shown in [13] that (23) is the maximal SINR that the 
RABF based on diagonal loading can achieve. The 

corresponding loading is ξm = – (σn
2 + σs

2||an||2), calculated by 
letting the derivative of (22) with respect to ξ be zero (see [13] 
for detail). It is surprising that, despite the apparent differences 
between the proposed ξo and the ξm in [13] in both sign and 
magnitude, the W-RABF can achieve almost the same SINR as 
its counterpart based on maximal-SINR criterion when ε is small. 
Another useful conclusion is that the output SINR of the W-
RABF is nearly constant and independent of ε when it is small.  

V. Numerical Examples 

Several numerical examples are presented here to show the 
correctness and effectiveness of the proposed method. The SOI 
power estimation and the SINR are used here to measure the 
performance of the beamformers. The involved algorithms are 
the following: (a) SABF; (b) RABF with a fixed loading (FL) 
of 10 dB above the spatially white noise (FL-RABF); (c) 
RABF with a loading equal to the standard deviation of the 
diagonal entries of R (STD-RABF); (d) the RABF with a 
loading equal to – λmin + [(λK – λmin)(λK+1–λmin)]-1/2, where λmax = 
λ1 ≥ … ≥ λM = λmin are the eigenvalues of R (EV-RABF); (e) 
W-RABF with the optimal weight vector determined by (17), 
referred to as the GEW-RABF; (f) W-RABF with the optimal 
loading solved by iterative W-RABF (IW-RABF); (g) W-
RABF with the optimal loading given by (14), the closed-form 
W-RABF (CW-RABF). 

Consider a uniform linear array with M = 10 sensors spaced 
half a wavelength apart and the 0 dB spatially white Gaussian 
noise, σn

2 = 1. Three uncorrelated signals impinge upon the 
array: the SOI from the angle of 0o and two interfering signals 
from 20o and -30o. The SOI power is 10 dB, while the powers 
of the two interfering signals are both 30 dB. For the sake of 
simplicity, assume the steering vector errors are mainly due to 
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Fig. 2. Performance comparisons based on steering vector uncertainties at N = 1000.  
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Fig. 3. Performance comparisons based on SNR at N = 1000, Δs = +2o, and ε = 1.8017. 
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DOA uncertainties here with the DOA estimate error Δs = 2o 
and consequently ε = 1.8017. 

The performance comparisons of these algorithms in relation 
to the number of snapshots N are illustrated in Fig. 1. The 
SINR comparison is shown in Fig. 1(a) and the SOI power 
estimation comparison is shown in Fig. 1(b). At each snapshot 
number, 100 Monte Carlo trials are carried out to get the 
averaged results. For SINR, it is clear that the performance of 
SABF is unacceptable in the presence of steering vector 
mismatches, for it tends to suppress the SOI as interference 
(signal cancellation). Although FL-RABF improves robustness, 
since its loading is fixed, its performance is still poor. Selecting 
diagonal loading adaptively according to the elements of R, 
STD-RABF and EV-RABF outperform FL-RABF. But the 
chosen loadings are not necessarily optimal, so the 
performance of STD-RABF and EV-RABF is still somewhat 

unsatisfactory. On the other hand, the three W-RABFs–GEW-
RABF, IW-RABF, and CW-RABF–achieve the best 
performance among these algorithms. The SINR of CW-
RABF almost coincides with that of IW-RABF, implying that 
(14) approximates the actual optimal loading very accurately. 
Moreover, the performance lines of IW-RABF and CW-RABF 
are very close to that of GEW-RABF, showing that wo is a very 
accurate approximation of wGE or the actual optimal weight 
vector of W-RABF. Note that when N exceeds 1000, the SINR 
of W-RABF can be predicted precisely. For SOI power 
estimation, the result of SABF is far below the actual value due 
to signal cancellation. The performance lines of FL-RABF, 
STD-RABF, and EV-RABF indicate that the SOI is still 
suppressed somewhat in the three algorithms because the chosen 
loadings are not optimal. Predicted accurately by (20), the three 
W-RABFs tend to overestimate σs

2. Equation (21)  
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Fig. 4. Performance comparisons based on DOA of interference at N = 1000, Δs = +2o, and ε = 1.8017. 
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estimates the SOI power precisely, proving implicitly that (14) is 
an accurate approximation of the actual optimal loading. 
Furthermore, when N is small, ignoring finite sample effects 
causes an error between (14) and the actual optimal loading. As a 
result, the performance of W-RABF degrades and is similar to 
that of EV-RABF and STD-RABF. The problem of how finite 
sample effects affect the optimal loading is detailed in [11]. 

Changes in the DOA estimation error and the performance 
comparisons in relation to the steering vector uncertainty are 
illustrated in Fig. 2 with the snapshot number fixed at N = 1000. 
In this paper, the steering vector uncertainty is defined as Un = 
20 × log10 (||a|| -1 ε) (dB). Considering the simulation results in 
Fig. 2, the following points are straightforward. First, even in 
the case of small steering vector uncertainties, SABF works 
very poorly compared with other algorithms. Second, FL-
RABF works well when the steering vector uncertainty is 
small, but since its loading is fixed, its performance is still poor 
in the case of high uncertainties. Third, EV-RABF and STD-
RABF outperform FL-RABF as expected. However, because 
the chosen loadings are not directly related to the steering 
vector uncertainty, their performance degrades when the 
uncertainty varies. Fourth, the three W-RABFs achieve the best 
robustness against steering vector mismatches. Note that CW-
RABF, IW-RABF, and GEW-RABF achieve almost the same 
performance, confirming again that (14) approximates the 
actual optimal loading very accurately. It is beyond our 
expectation that although the analysis in this paper is based on 
the assumption of small or middle-sized ε (uncertainties), (14) 
still works well for uncertainties as high as -3 dB. When the 
steering vector uncertainty is below -3 dB, the SINR of W-
RABF is nearly constant and independent of ε, in accordance 
with the analysis in the previous section. When the uncertainty 
exceeds this bound, the performance of IW-RABF and CW-

RABF degrades abruptly. This is because larger uncertainties 
lead to larger loadings, as shown in (14), which make the 
robust beamformer act more like a data-independent one with 
poor capability to suppress interference adaptively [2]. For SOI 
power estimation, IW-RABF and CW-RABF overestimate σs

2 
as expected. In addition, as predicted in (20), when the 
uncertainty increases, more obvious overestimation will occur. 
This overestimation is eliminated in (21), which predicts the 
SOI power far more precisely in a wider range of steering 
vector uncertainties. Furthermore, GEW-RABF acts differently 
from IW-RABF and CW-RABF in the SOI power estimation.   
This may be due to the fact that there is the possibility of some 
scale ambiguity between wo and wGE which affects the SOI 
power estimation but has no effect on the output SINR. 

The performance comparisons in relation to the input SNR at 
the fixed snapshot number N = 1000 are illustrated in Fig. 3. 
The input SNR is changed by varying the SOI power σs

2 while 
the other parameters are the same as those in the first example. 
As expected, the three W-RABFs possess the best robustness 
against SNR variation. It is confirmed again that (14) and (16) 
accurately approximate the actual optimal loading and weight 
vector, respectively. Based on the two expressions, (20), (21), 
and (23) predict the performance of W-RABF effectively. 

In the final simulation, only one interference source is 
reserved and its DOA varies from -15o to +15o. The snapshot 
number is fixed at N = 1000 and the other parameters are the 
same as those in the first simulation. It is obvious that when the 
interference is outside the main beam, that is, outside the range 
of about [-10o, +10o], the performance of W-RABF is nearly 
constant. On the other hand, when the interference moves into 
the main beam, the performance of W-RABF, whether solved 
by iteration or by (14) degrades dramatically, and even worse 
than the other four algorithms in this example. This indicates 
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that W-RABF is only advised when the interference is outside 
the main beam. So the assumption on small projection of the 
SOI steering vector into the interference subspace is reasonable. 
Furthermore, the threshold of the difference between SOI and 
the interference is about 4o in this example. When the 
difference exceeds this threshold, the approximated results 
proposed in this paper work well and the performance lines of 
CW-RABF, in both SINR and SOI power estimation, almost 
coincide with those of IW-RABF and GEW-RABF. When the 
difference is below 4o, however, the assumption of small 
projection is no longer valid and the approximated results 
deviate from their actual values. As a result, CW-RABF acts 
strangely. 

VI. Conclusion 

The approach of W-RABF was investigated in this paper, 
which belongs to the class of diagonal loading approaches in 
which the loading determination is based on worst-case 
performance optimization. A simple closed-form solution to 
optimal loading was suggested after some approximations. 
Since the loading can be directly calculated, it is 
computationally more efficient than the iterative methods. 
More importantly, the solution reveals how difference factors 
affect the optimal loading. The optimal loading is determined 
by the noise level σn

2, the SOI power σs
2, the steering vector 

distortion bound ε, and the norm of the steering vector 
projection onto the subspace orthogonal to the interference 
subspace, that is, ||an||2 and ||ãn||2.  

Based on the closed-form optimal loading, a performance 
analysis of W-RABF was performed, focusing mainly on the 
SOI power estimation and the output SINR. Corresponding 
closed-form expressions were presented to predict the behavior 
of W-RABF and some useful conclusions about W-RABF 
were drawn based on these expressions. 

Since the optimal loading is chosen adaptively according to 
the steering vector uncertainty, simulation results show that W-
RABF achieves excellent robustness and outperforms many 
related diagonal loading approaches, such as FL-RABF, EV-
RABF, STD-RABF, and so on. It has also been confirmed that 
the proposed closed-form solution is an accurate approximation 
of the actual optimal loading and the results of the performance 
analysis predict the behavior of W-RABF precisely. 
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