• Title/Summary/Keyword: Electronic Stability Control

Search Result 514, Processing Time 0.027 seconds

Comparative Review of Design Guidelines of Hospice Facilities for Establishing Standards (호스피스 시설기준 수립을 위한 디자인 가이드라인 비교연구)

  • Lee, Sukyung;Yoon, Hungjin
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • Purpose: This study aims to analyze design guidelines for hospice facilities in the US, UK, and Canada focused on design considerations and space requirements, and utilizes them as baseline data for establishing standards for Korean hospice facilities. Methods: Comparative review was carried out to investigate hospice care models, design consideration, and room sizes and requirements for design guideline of hospice facilities in United States, UK and Canada identified on electronic database and review articles, and to examine major characteristics and tendencies of hospice facilities. Results: The hospice care models characteristics in design guidelines is generally largely divided into hospital-based hospice facility, Nursing home-based hospice facility, and daycare hospice. The design considerations in hospice facilities focused on medical efficiency, flexibility, barrier-free environment, person-centered care, and stability. There is also a need for single resident room, rooms for the patient's family, and isolation room for infection control. Implications: it is recommended to establish standards for the installation and operation of required and recommended rooms and considerations when establishing the standards of hospice facilities in Korea. This Study is limited to a simple comparative analysis of the framework of guideline.

Sublimation and high-temperature stability of SnO2-doped Bi2O3 ionic materials in controlled atmosphere

  • Cheng, Yu-Hung;Chen, Yen-Yu;Wei, Wen-Cheng J.
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.388-393
    • /
    • 2018
  • Sublimation of $Bi_2O_3$-based materials is an important degradation issue for the long-term applications of many electronic devices. A series of $SnO_2$-doped $Bi_2O_3$ materials (SBO), was synthesized, densified, and then tested in air or strong reducing atmosphere. The $SnO_2$-doping effects and sublimation kinetics of the SBO materials were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and precise mass loss measurement. The results show that formation of $Bi_2Sn_2O_7$ phase greatly retards the mass loss of SBO. The SBO samples show a surface sublimation in an energy of $52.6kJ{\cdot}mol^{-1}$. However, the sublimation is also controlled by surface microstructure as the amount of vaporizing species (the Bi or gaseous Bi-oxides) is more than 0.1 mass%. The evaporation is retarded on the rough surface and the mechanism of surface evaporation is changed to diffusional control.

Development of a Multi-Camera Inline System using Machine Vision System for Quality Inspection of Pharmaceutical Containers (의약 용기의 품질 검사를 위한 머신비전을 적용한 다중 카메라 인라인 검사 시스템 개발)

  • Tae-Yoon Lee;Seok-Moon Yoon;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.469-473
    • /
    • 2024
  • In this paper proposes a study on the development of a multi-camera inline inspection system using machine vision for quality inspection of pharmaceutical containers. The proposed technique captures the pharmaceutical containers from multiple angles using several cameras, allowing for more accurate quality assessment. Based on the captured data, the system inspects the dimensions and defects of the containers and, upon detecting defects, notifies the user and automatically removes the defective containers, thereby enhancing inspection efficiency. The development of the multi-camera inline inspection system using machine vision is divided into four stages. First, the design and production of a control unit that fixes or rotates the containers via suction. Second, the design and production of the main system body that moves, captures, and ejects defective products. Third, the design and development of control logic for the embedded board that controls the entire system. Finally, the design and development of a user interface (GUI) that detects defects in the pharmaceutical containers using image processing of the captured images. The system's performance was evaluated through experiments conducted by a certified testing agency. The results showed that the dimensional measurement error range of the pharmaceutical containers was between -0.30 to 0.28 mm (outer diameter) and -0.11 to 0.57 mm (overall length), which is superior to the global standard of 1 mm. The system's operational stability was measured at 100%, demonstrating its reliability. Therefore, the efficacy of the proposed multi-camera inline inspection system using machine vision for the quality inspection of pharmaceutical containers has been validated.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Design and Implementation of Wireless Protocol for Managing Rooms in a Large Building (대형 건물 객실 관리를 위한 무선 프로토콜 설계 및 구현)

  • Jeong, Woo-Jeong;Choi, Sung-Chul;Jeong, Kyu-Seuck;Kim, Jong-Heon;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2010
  • In wireless networks environment, there are attempts for constructing systems through which we can monitor and control various electronic devices used in large buildings at remoteness by using Zigbee protocol. Since address assignment method of DAA in Zigbee has a depth restriction, we cannot construct a network in large buildings. And also communication failures are frequent in a large network since broadcast storm can be occurred due to frequent broadcasts among a lot of nodes at AODV routing used in Zigbee. In order to solve these problems, in this paper, we propose a novel protocol which has improved the restriction of depth by using a fixed address assignment method, and has enhanced the broadcast occurrence by devising a static routing method to a packet movement between floors. Regardless of entire network, additionally, this was to enable internal communication reliably by composing an independent PAN. Specially, in this paper, we implemented the proposed wireless protocol and proved stability and practicality through experiment appliances of control of devices established in a large building.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Physiochemical Properties of Functional Oils Produced Using Red Yeast-Rice Ethanol Extracts and Diacylglycerol Oil (홍국쌀 에탄올 추출물과 Diacylglycerol Oil을 이용하여 제조한 기능성 유지의 이화학적 특성 연구)

  • Kim, Nam-Sook;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.201-208
    • /
    • 2007
  • Functional oils (FOs) were produced from commercial diacylglycerol oil and red yeast rice extracts from 80% ethanol for 1 hr in a shaking water bath at $35^{\circ}C$ and 175 rpm. FOs contained (A) 600, (B) 1200, (C) 1800, and (D) 2280 ppm of red yeast-rice extracts, respectively. The Hunter a value and b value were risen whereas L value was reduced along with the increase of extract concentration. Content of monacolin K and total phenolic compounds in FOs significantly increased according to the increase of extract concentration. The oxidation stability of FOs was observed by Rancimat at $98^{\circ}C$. Induction time decreased according to the increase of extract concentration. The major volatile compounds of FOs were compared using the electronic nose (EN) system and solid phase microextraction (SPME) method combined with gas chromatograph/mass spectrometry (GC/MS). EN was composed of 12 different metal oxide sensors. Sensitivities (Rgas/Rair) of sensors from EN were analyzed by principal component analysis (PCA), whose proportion was 99.66%. For qualitative or quantitative analysis of volatile compounds by SPME-GC/MS, the divinylbenzene/carboxene/polydimethyl-siloxane fiber and sampling temperature of $50^{\circ}C$ were applied.

A Frame Stress and Integration Monitoring System based on Continuous Track Type for Multipurpose Application of Electric Wheelchair (전동휠체어의 다목적 활용을 위한 무한궤도형 기반의 프레임 응력 및 통합 모니터링 시스템)

  • Jo, Kyeong-Ho;Jung, Se-Hoon;Park, Jae-Sung;Yoo, Seung-Hyun;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1135-1144
    • /
    • 2018
  • An electric wheelchair used to be utilized as a piece of equipment for the disabled and the elderly in the past, but the recent changes to its functions and forms have made it available across various fields and purposes. In this paper, we propose a continuous track type of electric wheelchair prototype to be used in various fields and environments and a monitoring system to control it. A frame stress design was applied to improve its stability during driving compared with the previous wheelchairs. In addition, we provide a convenience for free and easy operation of them using the App. based on android. A monitoring system based on C# was also added to control a large number of electric wheelchairs. As a result of the implementation and performance evaluation, the von Mises stress value was measured 4.401% within the normal range through five times of stress interpretations, and its accuracy of communication for system manipulation was recorded about 98.75%, which means that it has been proven to be safer than the previous wheelchairs.

TradeB: A Blockchain-based Property Trade Service Using Trusted Brokers (TradeB: 신뢰성있는 중개인을 통한 블록체인 기반 재화 계약 서비스)

  • Yoon, Yeo-Guk;Eom, Hyun-Min;Lee, Myung-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.819-831
    • /
    • 2019
  • The types of properties traded in modern times are rapidly increasing due to changes in consumption patterns. However, as the type of properties traded increases, estimation about the value of properties may become inaccurate. There is a problem that it is difficult for consumers to estimate the right value and the variety of trading forms makes it difficult to guarantee the reliability of value estimation As access to a variety of properties has expanded, these shortcomings are considered to be a factor that hinders the stability of the shared economic market. In this paper, to resolve this issue, we present a blockchain-based property contract service through a trusted broker. The developed service registers trusted brokers into smart contracts on the Ethereum blockchain and use them for the evaluation and contract process of properties. In addition, registered contents, proposals and contracts of properties are stored in the blockchain to ensure the reliability of the contract process. Every step of the contract process is stored in the smart contract, recorded in the transaction history of the blockchain, ensuring the reliability of the stored data. In addition, the entire process of registration, proposal, and contract is driven by smart contracts designed by state machine technology, enabling users to more securely control the contract process.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)