• Title/Summary/Keyword: Electronic Spectrum

Search Result 1,052, Processing Time 0.025 seconds

Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.20-33
    • /
    • 2015
  • Spectrum sensing is a key component of cognitive radio. The prediction of the primary user status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, because of noise uncertainty, secondary users have difficulty distinguishing between the primary signal and an unauthorized signal when an unauthorized user exists in a cognitive radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy between the primary signal and the unauthorized signal. The ability to detect the primary signal is thus robust against noise uncertainty, which leads to superior sensing performance in a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the primary user detection probability.

A study on the functional application of conducting polymer (도전성 고분자의 기능성 응용에 관한 연구)

  • 김종욱;김현철;정인성;김현관;구할본;김태성
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.520-526
    • /
    • 1994
  • A rectifying heterojunction consisting of polyparaphenylene(PPP) and polypyrrole(PPY) films was prepared by the electrochemical method. The photoresponse in the heterojunction of PPY and PPP is similar to the absorption spectrum of undoped PPP. This fact suggests that photoresponse depends strongly upon polyparaphenylene of semiconductor. The fill-factor was calculated from the photo current-voltage curve to be 0.19, which is relatively small compared to polyacetylene-polythiophene heterojunctions.

  • PDF

RF Spectrum Cognition Technologies for IoT Wireless Sensors (IoT 무선 센서를 위한 RF 스펙트럼 인지 기술)

  • Yoon, Won-Sang;Han, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.122-127
    • /
    • 2016
  • In this paper, new spectrum sensing schemes based on analog/RF front-end processing are introduced for IoT wireless sensor networks. While the conventional approaches for wireless channel cognition have been issued in signal processing area, the RF spectrum cognition concept makes it feasible to achieve cognitive wireless sensor networks (C-WSNs). The spectrum cognition at RF processing is categorized as four kinds of sensing mechanisms. Two recent reseaches are described as promising candidates for the C-WSN. One senses spectrum by the frequency discriminating receiver, the other senses and detects from the frequency selective super-regenerative receiver. The introduced systems with simple and low-power RF architectures play dual roles of channel sensing and demodulation. simultaneously. Therefore, introduced spectrum sensing receivers can be one of the best candidates for IoT wireless sensor devices in C-WSN environments.

Mobility-Spectrum Analysis of an Anisotropic Material System with a Single-Valley Indirect-Band-Gap Semiconductor Quantum-Well

  • Joung, Hodoug;Ahn, Il-Ho;Yang, Woochul;Kim, Deuk Young
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.774-783
    • /
    • 2018
  • Full maximum-entropy mobility-spectrum analysis (FMEMSA) is the best algorithm among mobility spectrum analyses by which we can obtain a set of partial-conductivities associated with mobility values (mobility spectrum) by analyzing magnetic-field-dependent conductivity-tensors. However, it is restricted to a direct band-gap semiconductor and should be modified for materials with other band structures. We developed the modified version of FMEMSA which is appropriate for a material with a single anisotropic valley, or an indirect-band-gap semiconductor quantum-well with a single non-degenerate conduction-band valley e.g., (110)-oriented AlAs quantum wells with a single anisotropic valley. To demonstrate the reliability of the modified version, we applied it to several sets of synthetic measurement datasets. The results demonstrated that, unlike existing FMEMSA, the modified version could produce accurate mobility spectra of materials with a single anisotropic valley.

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF

A study on the development of CW(Continuous-Wave) Doppler System using FFT (FFT를 이용한 연속초음파 도플러 장치에 관한 연구)

  • Lee, Dae-Hyung;Kang, Chung-Shin;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.709-712
    • /
    • 1988
  • Ultrasonic Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. CW(Continuous-Wave) Doppler System uses quadrature detection and phase rotation method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time-domain, had been fabricated. But time-domain analyzing such as audio evaluation and zero- crossing detection for instantaneous and mean frequnecy measurement do not provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency-domain technique to improve system performance. In this paper, we describe a unit which is composed of CW Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of Blood signal.

  • PDF

Fluorescence Spectroscopic and Time-Dependent Density-Functional Theory Studies of Diphenylsilane

  • Boo, Bong-Hyun;Lee, Jae-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.993-996
    • /
    • 2012
  • We investigated fluorescence and fluorescence excitation of diphenylsilane (DPS) in a solution and molecular beams in combination with the aid of the DFT method. When the molecule was photoexcited at 250 nm in a cyclohexane solution, normal and excimer fluorescences were observed in the ranges of 260-320 and 330-450 nm, respectively. The fluorescence excitation spectrum indicates that the channel leading to the intramolecular excimer formation is not efficient in comparison with the normal fluorescence. Vibrationally resolved fluorescence excitation spectra were measured for the DPS molecules cooled in pulsed supersonic expansion of He in the range 262.2-271.7 nm, in which we can see several electronic excitation spectra exhibiting the electronic band origins. We found that the simulated absorption spectrum based on the time-dependent densityfunctional theory calculations accords well with the absorption spectrum.

Suppressing Harmonics in Delta Modulation by Synchronization Hysteresis with the Reference Signal

  • Aurasopon, Apinan;Kumhom, Pinit
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.409-412
    • /
    • 2002
  • The delta modulation used for controlling the speed of an induction motor has high peak of harmonic spectrum at low speed range causing acoustic noises in the induction motor. This paper proposes to suppress the harmonics by synchronizing the reference signal with the hysteresis windows for controlling the distribution of the switching frequency. As a result we can decrease the peak of harmonic spectrum. The simulation results show that the peak spectrum of harmonics can be reduced up to 60%.

  • PDF

Spectroscopic Identification of Isomeric 2,3- and 2,6-Dimethylbenzyl Radicals in Corona Discharge

  • Yoon, Young Wook;Lee, Sang Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.763-767
    • /
    • 2013
  • We resolved the controversial assignments of the visible vibronic bands observed from corona discharge of 1,2,3-trimethylbenzene. The vibronic bands belonging to the jet-cooled 2,6-dimethylbenzyl radical were clearly identified from the spectrum observed from corona discharge of 2,6-dimethylbenzyl chloride. After subtracting the bands of the 2,6-isomer from the spectrum observed from corona discharge of 1,2,3-trimethylbenzene, the vibronic bands of the 2,3-isomer were also identified. By comparing data with the known vibrational data of 1,2,3-trimethylbenzene and the results of ab initio calculations, we determined the electronic energies of the $D_1{\rightarrow}D_0$ transitions and vibrational mode frequencies in the ground electronic states of the 2,3-and 2,6-dimethylbenzyl radicals.

Enhanced Channel Access Estimation based Adaptive Control of Distributed Cognitive Radio Networks

  • Park, Jong-Hong;Chung, Jong-Moon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1333-1343
    • /
    • 2016
  • Spectrum sharing in centrally controlled cognitive radio (CR) networks has been widely studied, however, research on channel access for distributively controlled individual cognitive users has not been fully characterized. This paper conducts an analysis of random channel access of cognitive users controlled in a distributed manner in a CR network. Based on the proposed estimation method, each cognitive user can estimate the current channel condition by using its own Markov-chain model and can compute its own blocking probability, collision probability, and forced termination probability. Using the proposed scheme, CR with distributed control (CR-DC), CR devices can make self-controlled decisions based on the status estimations to adaptively control its system parameters to communicate better.