DOI QR코드

DOI QR Code

Mobility-Spectrum Analysis of an Anisotropic Material System with a Single-Valley Indirect-Band-Gap Semiconductor Quantum-Well

  • Joung, Hodoug (Quantum Functional Semiconductor Research Center, Dongguk University) ;
  • Ahn, Il-Ho (Quantum Functional Semiconductor Research Center, Dongguk University) ;
  • Yang, Woochul (Department of Physics, Dongguk University) ;
  • Kim, Deuk Young (Department of Semiconductor Science, Dongguk University)
  • Received : 2018.04.14
  • Accepted : 2018.06.20
  • Published : 2018.11.10

Abstract

Full maximum-entropy mobility-spectrum analysis (FMEMSA) is the best algorithm among mobility spectrum analyses by which we can obtain a set of partial-conductivities associated with mobility values (mobility spectrum) by analyzing magnetic-field-dependent conductivity-tensors. However, it is restricted to a direct band-gap semiconductor and should be modified for materials with other band structures. We developed the modified version of FMEMSA which is appropriate for a material with a single anisotropic valley, or an indirect-band-gap semiconductor quantum-well with a single non-degenerate conduction-band valley e.g., (110)-oriented AlAs quantum wells with a single anisotropic valley. To demonstrate the reliability of the modified version, we applied it to several sets of synthetic measurement datasets. The results demonstrated that, unlike existing FMEMSA, the modified version could produce accurate mobility spectra of materials with a single anisotropic valley.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Beck, W.A., Anderson, J.R. : Determination of electrical transport properties using a novel magnetic field-dependent Hall technique. J. Appl. Phys. 62, 541-554 (1987) https://doi.org/10.1063/1.339780
  2. Rothman, J., Meilhan, J., Perrais, G., Belle, J.P., Gravrand, O. : Maximum entropy mobility spectrum analysis of HgCdTe heterostructures. J. Electron. Mater. 35, 1174-1184 (2006) https://doi.org/10.1007/s11664-006-0238-2
  3. Gui, Y., Li, B., Zheng, G., Chang, Y., Wang, S., He, L., Chu, J. : Evaluation of densities and mobilities for heavy and light holes in p-type HgCdTe molecular beam epitaxy films from magneticfi eld-dependent Hall data. J. Appl. Phys. 84, 4327-4331 (1998) https://doi.org/10.1063/1.368652
  4. Antoszewski, J., Faraone, L., Vurgaftman, I., Meyer, J.R., Hoffman, C.A. : Application of quantitative mobility-spectrum analysis to multilayer HgCdTe structures. J. Electron. Mater. 33, 673-683 (2004) https://doi.org/10.1007/s11664-004-0066-1
  5. Chrastina, D., Hague, J.P., Leadley, D.R. : Application of Bryan's algorithm to the mobility spectrum analysis of semiconductor devices. J. Appl. Phys. 94, 6583-6590 (2003) https://doi.org/10.1063/1.1621719
  6. Kiatgamolchai, S., Myronov, M., Mironov, O.A., Kantser, V.G., Parker, E.H.C., Whall, T.E. : Mobility spectrum computational analysis using a maximum entropy approach. Phys. Rev. E 66, 036705 (2002) https://doi.org/10.1103/PhysRevE.66.036705
  7. Vurgaftman, I., Meyer, J.R., Hoffman, C.A., Cho, S., Ketterson, J.B., Faraone, L., Antoszewski, J., Lindemuth, J.R. : Quantitative mobility spectrum analysis (QMSA) for hall characterization of electrons and holes in anisotropic bands. J. Electron. Mater. 28, 548-552 (1999) https://doi.org/10.1007/s11664-999-0110-2
  8. Dasgupta, S., Birner, S., Knaak, C., Bichler, M., Fontcuberta i Morral, A., Abstreiter, G., Grayson, M. : Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass. Appl. Phys. Lett. 93, 132102 (2008) https://doi.org/10.1063/1.2991448
  9. Sun, Y., Thompson, S.E., Nishida, T. : Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101, 104503 (2007) https://doi.org/10.1063/1.2730561
  10. Dhar, S., Ungersbock, E., Kosina, H., Grasser, T., Selberherr, S. : Electron mobility model for <110> stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97-100 (2007) https://doi.org/10.1109/TNANO.2006.888533
  11. Vakili, K., Shkolnikov, Y.P., Tutuc, E., Bishop, N.C., De Poortere, E.P., Shayegan, M. : Spin-dependent resistivity and quantum Hall ferromagnetism in two-dimensional electrons confined to AlAs quantum wells. Phys. E 34, 89-92 (2006) https://doi.org/10.1016/j.physe.2006.02.026
  12. Padmanabhan, M., Gokmen, T., Bishop, N.C., Shayegan, M. : Effective mass suppression in dilute, spin-polarized two-dimensional electron systems. Phys. Rev. Lett. 101, 026402 (2008) https://doi.org/10.1103/PhysRevLett.101.026402
  13. Meyer, J.R., Hoffman, C.A., Bartoli, F.J., Arnold, D.A., Sivananthan, S., Fauri, J.P. : Methods for magnetotransport characterization of IR detector materials. Semicond. Sci. Technol. 8, 805-823 (1993) https://doi.org/10.1088/0268-1242/8/6S/004

Cited by

  1. An alternative method for measurement of charge carrier mobility in semiconductors using photocurrent transient response vol.19, pp.4, 2018, https://doi.org/10.1016/j.cap.2019.02.002
  2. New techniques for mobility spectrum analysis vol.129, pp.16, 2018, https://doi.org/10.1063/5.0040540