• Title/Summary/Keyword: Electronic Space

Search Result 1,635, Processing Time 0.028 seconds

Introduction and Application of Worst Case Analysis in Space Environment (우주 환경에서의 Worst Case Analysis에 대한 소개와 응용 예)

  • Lee, Yun-Ki;Kwon, Ki-Ho;Kim, Day-Young;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.58-66
    • /
    • 2008
  • In the space environment, many other things to design electronic circuits should be considered with respect to commercial circuit design. The first thing is that electronics in space are likely to be exposed to radiation effects and the second thing is that it is impossible to repair or replace electronic parts after once spacecraft was launched. In this severe situation, very strict and tight worst case analysis conditions should be applied to the electronics in space environment to do its own function well without any problems during the overall mission period. So this paper summarizes worst case input conditions and methods which are specified in the ESA Worst Case Analysis Specification (ECSS-Q-30-01A) and proposes the results of Worst Case Analysis for one simple electronic circuit which is implemented at a real On-Board Computer in the Low Earth Orbit Satellite.

  • PDF

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.

Stereo-Vision-Based Human-Computer Interaction with Tactile Stimulation

  • Yong, Ho-Joong;Back, Jong-Won;Jang, Tae-Jeong
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.305-310
    • /
    • 2007
  • If a virtual object in a virtual environment represented by a stereo vision system could be touched by a user with some tactile feeling on his/her fingertip, the sense of reality would be heightened. To create a visual impression as if the user were directly pointing to a desired point on a virtual object with his/her own finger, we need to align virtual space coordinates and physical space coordinates. Also, if there is no tactile feeling when the user touches a virtual object, the virtual object would seem to be a ghost. Therefore, a haptic interface device is required to give some tactile sensation to the user. We have constructed such a human-computer interaction system in the form of a simple virtual reality game using a stereo vision system, a vibro-tactile device module, and two position/orientation sensors.

  • PDF

Calculation of Characteristics for Electromagnetic Waves Scattering in Discrete Non-uniform Media

  • Ka Min-Ho;Vazhenin N. A.;Volkovsky A.S.;Plokhikh A. P.
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.143-146
    • /
    • 2004
  • Signals of the short wave part of centimetre, millimetre and optic wave length ranges are being broadly used in the communication, location and remote sensing systems with space channels. In this case the presence of discrete non-uniform mediums like orbital debris, space dust and other discrete formations in the propagation channel may have substantial influence upon the characteristics of wave processes. and thus upon the data system quality. Mathematical models for studying the discrete non-uniform mediums effect on the characteristics of electromagnetic wave propagation are analyzed in this paper.

  • PDF

Vision-based hand gesture recognition system for object manipulation in virtual space (가상 공간에서의 객체 조작을 위한 비전 기반의 손동작 인식 시스템)

  • Park, Ho-Sik;Jung, Ha-Young;Ra, Sang-Dong;Bae, Cheol-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.553-556
    • /
    • 2005
  • We present a vision-based hand gesture recognition system for object manipulation in virtual space. Most conventional hand gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Therefore, we propose a statistical method to recognize and detect hand regions in images using geometrical structures. Also, Our hand tracking system employs multiple cameras to reduce occlusion problems and non-synchronous multiple observations enhance system scalability. Experimental results show the effectiveness of our method.

  • PDF

TEBS Technique with Using STBC for MISO Systems

  • Kim, Hong-Cheol;Park, Jae-Hyung;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.140-145
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC)[1,2] employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role of utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channels conditioned with varying the degree of their correlations. The result indicates that our proposed scheme is good performance in spatially correlated channel.

A Memory-Efficient VLC Decoder Architecture for MPEG-2 Application

  • Lee, Seung-Joon;Suh, Ki-bum;Chong, Jong-wha
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.360-363
    • /
    • 1999
  • Video data compression is a major key technology in the field of multimedia applications. Variable-length coding is the most popular data compression technique which has been used in many data compression standards, such as JPEG, MPEG and image data compression standards, etc. In this paper, we present memory efficient VLC decoder architecture for MPEG-2 application which can achieve small memory space and higher throughput. To reduce the memory size, we propose a new grouping, remainder generation method and merged lookup table (LUT) for variable length decoders (VLD's). In the MPEG-2, the discrete cosine transform (DCT) coefficient table zero and one are mapped onto one memory whose space requirement has been minimized by using efficient memory mapping strategy The proposed memory size is only 256 words in spite of mapping two DCT coefficient tables.

  • PDF

A Study on Speaker Recognition Using MFCC Parameter Space (파마메터 공간을 이용한 화자인식에 관한 연구)

  • Lee Yong-woo;Lim dong-Chol;Lee Haing Sea
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.57-60
    • /
    • 2001
  • This paper reports on speaker-Recognition of context independence-speaker recognition in the field of the speech recognition. It is important to select the parameter reflecting the characteristic of each single person because speaker-recognition is to identify who speaks in the database. We used Mel Frequency Cesptrum Coefficient and Vector Quantization to identify in this paper. Specially, it considered to find characteristic-vector of the speaker in different from known method; this paper used the characteristic-vector which is selected in MFCC Parameter Space. Also, this paper compared the recognition rate according to size of codebook from this database and the time needed for operation with the existing one. The results is more improved $3\sim4\%$ for recognition rate than established Vector Quantization Algorithm.

  • PDF

Mechanism of Striation in Plasma Display Panel Cell

  • Yang, Sung-Soo;Iza, Felipe;Kim, Hyun-Chul;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.167-170
    • /
    • 2005
  • The mechanism of striation in the coplanar- and matrix-type plasma display panel (PDP) cells has been studied using the particle-in-cell Monte-Carlo Collision (PIC-MCC) model. The striation formation is related to the ionization energy of neutral atoms and the well-like deformation of space potential by space charge distribution. Negative wall charge accumulation by electrons on the MgO surface of the anode region is also one of the key factors for the formation of striation. The clearness of the striation phenomenon in PIC-MCC code in comparison with fluid code can be explained by using nonlocal electron kinetic effect.

  • PDF

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF