• Title/Summary/Keyword: Electronic Hopping Conduction (Polaron)

Search Result 11, Processing Time 0.023 seconds

Small Polaron Hopping Conduction of n=3 Ruddlesden-Popper Compound La2.1Sr1.9Mn3O10 System (II) (n=3인 Ruddlesden-Popper형 La2.1Sr1.9Mn3O10 세라믹스의 Small polaron Hopping 전도 (II))

  • Jung, Woo-Hwan;Lee, Joon-Hyung;Sohn, Jeong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.878-883
    • /
    • 2002
  • Electrical resistivity and thermoelectric power measurements on Mn-based $La_{2.1}Sr_{1.9}Mn_3O_{10}$ with layered perovskite structure as functions of temperature are presented. The experimental results demonstrate that the electronic transport in $La_{2.1}Sr_{1.9}Mn_3O_{10}$ is well described by the Emin-Holstein adiabatic small polaron model. The thermoelectric power data in the small polaron regime above Curie temperature is nearly equal to that predicted by nominal $Mn^{4+}$ valence arguments. This indicates that transport involves small polaron hopping.

Electrical Transport Properties of $La_{0.7}Sr_{0.3}FeO_{3}$ ($La_{0.7}Sr_{0.3}FeO_{3}$ 세라믹스의 전기전도 특성)

  • 정우환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.376-382
    • /
    • 2001
  • Magnetic and transport properties in the ceramic specimen of L $a_{0.7}$S $r_{0.3}$Fe $O_3$ with orthohombic structure has been investigated. Weak ferromagnetism has been observed in a ceramic sample of L $a_{0.7}$S $r_{0.3}$Fe $O_3$. Large dielectric relaxation of Debye type is observed in paramagnetic states within the temperature range of 130K~200K. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dispersion is related to holes hopping between F $e^{3+}$ and F $e^{4+}$ ions. The temperature dependencies of thermoelectric power and Dc conductivity suggest that the charge carrier responsible for the conduction are strongly localized. These experimental results have been interpreted in terms of a hopping process involving small polaron.n.laron.n.

  • PDF

Small Polaron Hopping Conduction of n=3 Ruddlesden-Popper Compound La2.1Sr1.9Mn3O10 System (n=3인 Ruddlesden-Popper형 La2.1Sr1.9Mn3O10의 Small polaron Hopping 전도)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.294-298
    • /
    • 2002
  • Polycrystalline $La_{2.1}Sr_{1.9}Mn_3O_{10}$ with layered perovskite structure have been successfully synthesized and investigated with respect to their thermoelectric, electric and magnetic properties. The large magnetoresistance (MR) effect with $-{\Delta}{\rho}/{\rho}_0$ of ∼120% at 0.85T was observed in a wide temperature range below a cusp temperature in resistivity of about 120K, which is well below the magnetic $T_C$. At high temperature, a singnificant difference between the activation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of small polaron, is observed. All of the experimental data can be well explained on the basis of the small polaron model.

EPR and Electrical Studies in Layered Na1.9Li0.1Ti3O7 and its Copper Doped Derivatives (층상구조의 Na1.9Li0.1Ti3O7과 그 구리 혼입 유도체의 EPR 및 전기적 연구)

  • Pal, D.;Chand, Prem;Tandon, R.P.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.49 no.6
    • /
    • pp.560-566
    • /
    • 2005
  • Sintered ceramic samples of pure and some copper doped layered sodium lithium tri-titanate ($Na_{1.9}Li_{0.1}Ti_{3-X}Cu_XO_{7-X}$) materials with different dopant molar percentages (0.0$Cu^{2+}$ at $Ti^{4+}$ sites in the lattice is proposed in this paper. Furthermore, three distinct regions have been identified in log(${\sigma}_{d.c.}T$) versus 1000/T plots. The lowest temperature region is attributed to electronic hopping conduction(polaron) for all copper doped derivatives and ionic conduction for lithium substituted $Na_2Ti_3O_7$.The mechanism of conduction in the intermediate region is associated interlayer ionic conduction and in the highest temperature region is associated modified interlayer ionic conduction.

Crystallization and Conductivity of $CuO-P_{2}O_{5}-Nb_{2}O_{5}-V_{2}O_{5}$ Glasses ($CuO-P_{2}O_{5}-Nb_{2}O_{5}-V_{2}O_{5}$ 유리의 결정화와 전기전도도)

  • 손명모;이헌수;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.291-294
    • /
    • 2000
  • The crystallization behavior and dc Conductivities of CuO-P$_2$O$_{5}$ -Nb$_2$O$_{5}$ -V$_2$O$_{5}$ glasses prepared by quenching on the copper plate were investigated. The conductivities of the glasses were range from 10$^{-5}$ s.$cm^{-1}$ / at room temperature, but the conductivities of the glass-ceramics were 10$^{-3}$ s.$cm^{-1}$ / increased by 10$^2$order. The crystalline product in the glass-ceramics was CuV$_2$O$_{6}$ . The linear relationship between in($\sigma$T) and T$^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping mechanism.

  • PDF

Crystallization and Electrical Properties Of CuO-$Nb_{2}O_{5}-V_{2}O_{5}$ Glass for Solid-state electrolyte (고체전해질용 CuO-$Nb_{2}O_{5}-V_{2}O_{5}$계 유리의 결정화와 전기적 특성)

  • 손명모;이헌수;구할본;김윤선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.552-556
    • /
    • 2000
  • The crystallization behavior and dc Conductivities of CuO-Nb$_2$O$_{5}$ -V$_2$O$_{5}$ glasses prepared by quenching on the copper plate were investigated. The conductivities of the glasses were range from 10$^{-4}$ s.$cm^{-1}$ / at room temperature, but the conductivities of the glass-ceramics were 10$^{-3}$ s.$cm^{-1}$ / increased by 10$^1$ order. The linear relationship between In($\sigma$T) and T$^{-1}$ suggested that the electrical conduction in the present glass system would be due to a small polaron hopping mechanism. The value of activation energy of glass-ceramics heat-treated at 30$0^{\circ}C$ for 12hrs was found to be 0.leV

  • PDF

Crystallization and Electrical Conductivity of $CuO-P_{2}O_{5}-V_{2}O_{5}$ Glass for Solid-state Electrolyte (고체전해질용 $CuO-P_{2}O_{5}-V_{2}O_{5}$유리의 결정화와 전기전도도)

  • 손명모;이헌수;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1018-1021
    • /
    • 2001
  • 1018-1021 The CuO-P$_2$O$_{5}$ containing P$_2$O$_{5}$ as glass-former were prepared by press-quenching method on the copper plate. By post-heat treatment of these glasses, the CuO-P$_2$O$_{5}$ -V$_2$O$_{5}$ -g1ass ceramics was obtained and the crystallization behavior and dc conductivities were investigovted. The heat-treated glass-ceramics decreased in electrical conductivity by the order of 10$^1$ compared to amorphous glass. The linear relationship between In($\sigma$T) and T$^{-1}$ indicated that electrical conduction in CuO-P$_2$O$_{5}$ -V$_2$O$_{5}$ -gass occurred by a small polaron hopping.

  • PDF

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis

  • Lee, Kee Hag;Lee, Jeeyoung;Dieckmann, Rudiger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.629-632
    • /
    • 2013
  • Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.

Crystallization and conductivity of CuO--$P_{2}O_{5}$-$Nb_{2}O_{5}$-$V_{2}O_{5}$Glasses for Solid State Eletrolyte (고체전해질용 CuO-$P_{2}O_{5}$-$Nb_{2}O_{5}$-$V_{2}O_{5}$계 유리의 결정화와 전기전도도)

  • 손명모;이헌수;김종욱;김윤선;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.475-480
    • /
    • 2001
  • Glasses in he system CuO-P$_2$O$_{5}$ -Nb$_2$O$_{5}$ -Nb$_2$O$_{5}$ -V$_2$O$_{5}$ were prepared by a press-quenching method on the copper plate. the glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from 10$^{-6}$ s.$cm^{-1}$ / at room temperature ,but the conductivities of the glass-ceramics were 10$^{-3}$ s.$cm^{-1}$ / increased by 10$^3$ order. The crystalline product in the glass-ceramics was CuV$_2$O$_{6}$ . the crystal growth of CuV$_2$O$_{6}$ phase increased with heat-treatment conditions. The linear relationship between il($\sigma$T) and T$^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF

Crystallization and Electrical properties of $CuO-P_2O_5-V_2O_5$ Glass for solid state Electrolyte (고체 전해질용 $CuO-P_2O_5-V_2O_5$ 유리의 결정화와 전기 전도도)

  • Son, Myung-Mo;Lee, Heon-Soo;Chun, Yon-Soo;Gu, Hal-Bon;Lee, Sang-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.934-937
    • /
    • 2003
  • Glasses in the system $CuO-P_2O_5-V_2O_5$ were prepared by a press-quenching method on the copper plate. The glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from $10^{-6}s.Cm^{-1}$ at room temperature, but the conductivities of the glass-ceramics were $10^{-3}s.Cm^{-1}$ increased by $10^3$ order. The crystalline product in the glass-ceramics was $CuV_2O_6$. Heat-treatment conditions influenced the crystal growth of $CuV_2O_6$ and conductivity. The linear relationship between in (${\sigma}T$) and $T^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF