• Title/Summary/Keyword: Electronic Distance Learning

Search Result 64, Processing Time 0.23 seconds

Distance Education in Soft-Switching Inverters

  • Lascu, Dan;Bauer, Pavol;Babaita, Mircea;Lascu, Mihaela;Popescu, Viorel;Popovici, Adrian;Negoitescu, Dan
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.628-634
    • /
    • 2010
  • The paper describes aspects regarding an E-learning approach of resonant ac inverters. The learning process is based on "Learning by Doing" paradigm supported by several learning tools: electronic course materials, interactive simulation, laboratory plants and real experiments accessed by Web Publishing Tools under LabVIEW. Built on LabVIEW and accompanied by a robust, flexible and versatile hardware, the experiment allows a comprehensive study by remote controlling and performing real measurements on the inverters. The study is offered in a gradual manner, according to the Leonardo da Vinci project EDIPE ($\b{E}$-learning $\b{D}$istance $\b{I}$nteractive $\b{P}$ractical $\b{E}$ducation) philosophy: theoretical aspects followed by simulations, while in the end the real experiments are investigated. Studying and experimenting access is opened for 24 hours a day, 7 days a week under the Moodle booking system.

A Simple Paint Thickness Estimation Model in Shipyard Spray Painting

  • Geun-Wan, Kim;Seung-Hun, Lee;Yung-Keun, Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This paper aims to develop a model to estimate the paint thickness in a shipyard spray painting according to changes of spraying distance and speed. We acquired the experimental datasets of five different conditions with respect to the spraying distance and speed using a painting robot. In addition, we applied a preprocessing step to handle noises which might be caused by various reasons such as a nozzle damage. Our method is to transform a thickness function of a specified spraying distance and speed into another function of an unknown spraying and speed. We observed that the proposed method shows more stable and more accurate predictions compared with an artificial neural network-based approach.

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

Proposal of Optimized Neural Network-Based Wireless Sensor Node Location Algorithm (최적화된 신경망 기반 무선 센서 노드위치 알고리즘 제안)

  • Guan, Bo;Qu, Hongxiang;Yang, Fengjian;Li, Hongliang;Yang-Kwon, Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1129-1136
    • /
    • 2022
  • This study leads to the shortcoming that the RSSI distance measurement method is easily affected by the external environment and the position error is large, leading to the problem of optimizing the distance values measured by the RSSI distance measurement nodes in this three-dimensional configuration environment. We proposed the CA-PSO-BP algorithm, which is an improved version of the CA-PSO algorithm. The proposed algorithm allows setting unknown nodes in WSN 3D space. In addition, since CA-PSO was applied to the BP neural network, it was possible to shorten the learning time of the BP network and improve the convergence speed of the algorithm through learning. Through the algorithm proposed in this study, it was proved that the precision of the network location can be increased significantly (15%), and significant results were obtained.

Machine Learning based Traffic Light Detection and Recognition Algorithm using Shape Information (기계학습 기반의 신호등 검출과 형태적 정보를 이용한 인식 알고리즘)

  • Kim, Jung-Hwan;Kim, Sun-Kyu;Lee, Tae-Min;Lim, Yong-Jin;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • The problem of traffic light detection and recognition has recently become one of the most important topics in various researches on autonomous driving. Most algorithms are based on colors to detect and recognize traffic light signals. These methods have disadvantage in that the recognition rate is lowered due to the change of the color of the traffic light, the influence of the angle, distance, and surrounding illumination environment of the image. In this paper, we propose machine learning based detection and recognition algorithm using shape information to solve these problems. Unlike the existing algorithms, the proposed algorithm detects and recognizes the traffic signals based on the morphological characteristics of the traffic lights, which is advantageous in that it is robust against the influence from the surrounding environments. Experimental results show that the recognition rate of the signal is higher than those of other color-based algorithms.

A Development of Displacement Measurement System using Ultrasonic Sensor (초음파 센서를 이용한 변위 측정 시스템 개발)

  • Kim, Jung-Sup;Kim, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.142-145
    • /
    • 1995
  • This paper is to develop a measurement system of the displacement distance using ultrasonic sensors. Two 400KHz ultrasonic sensors are used for realizing the measurement system, such as one sensor transmits the sine wave and the other sensor receives this wave. The displacement is measured by the phase difference between transmitting and receiving signals. A phase defecter transforms phase difference to voltage. Because the output voltage pattern has nonlinear characteristics, the relations of the voltage and the distance are learned by a neural network. As the results of teaming, the efficiency of measurement system is improved. This system can measure the displacement distance at the accuracy of 1 micrometer level.

  • PDF

Distance Estimation Based on RSSI and RBF Neural Network for Location-Based Service (위치 서비스를 위한 RBF 신경회로망과 RSSI 기반의 거리추정)

  • Byeong-Ro Lee;Ju-Won Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.265-271
    • /
    • 2023
  • Recently, location information services are gradually expanding due to the development of information and communication technology. RSSI is widely used to extract indoor and outdoor locations. The indoor and outdoor location estimation methods using RSSI are less accurate due to the influence of radio wave paths, interference, and surrounding wireless devices. In order to improve this problem, a distance estimation method that takes into account the wireless propagation environment is necessary. Therefore, in this study, we propose a distance estimation algorithm that takes into account the radio wave environment. The proposed method estimates the distance by learning RSSI input and output considering the RBF neural network and the propagation environment. To evaluate the performance of the proposed method, the performance of estimating the location of the receiver within a range of up to 55[m] using a BLE beacon transmitter and receiver was compared with the average filter and Kalman filter. As a result, the distance estimation accuracy of the proposed method was 6.7 times higher than that of the average filter and Kalman filter. As shown in the results of this performance evaluation, if the method of this study is applied to location services, more accurate location estimation will be possible.

Evaluating Online Courses in light of Quality Matters (QM) Standards at Umm Al-Qura University

  • Alqarni, Ali Suwayid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.165-174
    • /
    • 2021
  • This study aimed to ascertain whether electronic courses at the deanship of electronic learning and distance education at Umm Al-Qura University meet the quality standards developed by the Quality Matters (QM) organization. This endeavor adopted a mixed method of an explanatory sequential research design for an in-depth understanding of the topic under scrutiny. The sample of the study consisted of ten courses designed at the deanship and reviewed using an evaluation form. The results showed that the courses in focus did not meet the criteria of QM. Based on this finding, a semi-structured interview was designed to collect relevant data from the syllabus designers at the deanship. The interviews yielded information on the difficulties the course designers faced when designing QM-criteria-based courses. The results obtained from the interviews showed that the designers experienced administrative, technical, and faculty-member-related challenges that, when producing online courses, intercepted their way to achieving the QM standards. The study closed with some recommendations, the most important of which is a call for re-developing online courses in alignment with the well-recognized QM standards.

Study of Target Pose Estimation System: Distance Measurement Based Deep Learning Using Single Camera (딥러닝 단일카메라 거리 측정 기술 활용 구조대상자 위치추정시스템 연구)

  • Do-Yun Kim;Jong-In Choi ;Seo-Won Park ;Kwang-Young Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.560-561
    • /
    • 2023
  • 지진, 대형화재와 같은 많은 재해의 발생으로 인해 재난 안전 분야에 관심이 증가하고 있으며, 재난재해 시 신속하고 안전한 구조는 생존율에 영향을 준다. 기존 연구에서는 다양한 센서와 멀티카메라를 이용한 위치 추정 연구는 있으나, 가장 많이 설치된 단일카메라 기반의 위치 추정연구는 부족한 상태이다. 본 논문에서 단일카메라를 활용한 딥러닝 객체탐지와 거리측정 알고리즘을 이용하여 인명구조를 위한 구조대상자 위치추정시스템을 제안한다. 딥러닝을 활용한 객체탐지 기술을 이용하여 단일카메라 영상 내 객체와 해상도에 따른 바운딩 박스의 너비를 활용한 거리 계산식으로 거리를 추정하고, 객체의 위치좌표를 제공하여 신속한 재난 구조에 도움이 되는 시스템을 제안한다.

Implementation of a Web-based Hybrid Engineering Experiment System for Enhancing Learning Efficiency (학습효율 향상을 위한 웹기반 하이브리드 공학실험시스템 구현)

  • Kim, Dong-Sik;Choi, Kwan-Sun;Lee, Sun-Heum
    • Journal of Engineering Education Research
    • /
    • v.10 no.3
    • /
    • pp.79-92
    • /
    • 2007
  • To enhance the excellence, effectiveness and economical efficiency in the learning process, we implement a hybrid educational system for engineering experiments where web-based virtual laboratory systems and distance education systems are properly integrated. In the first stage, we designed client/server distributed environment and developed web-based virtual laboratory systems for digital systems and electrical/electronic circuit experiments. The proposed virtual laboratory systems are composed of four important sessions and their management system: concept learning session, virtual experiment session, assessment session. With the aid of the management system every session is organically tied up together to achieve maximum learning efficiency. In the second stage, we have implemented efficient and cost-effective distant laboratory systems for practicing electric/electronic circuits, which can be used to eliminate the lack of reality occurred during virtual laboratory session. The use of simple and user-friendly design allows a large number of people to access our distant laboratory systems easily. Thus, self-guided advanced training is available even if a lot of expensive equipment will not be provided in the on-campus laboratories. The proposed virtual/distant laboratory systems can be used in stand-alone fashion, but to enhance learning efficiency we integrated them and developed a hybrid educational system for engineering experiments. Our hybrid education system provides the learners with interactive learning environment and a new approach for the delivery of engineering experiments.