• Title/Summary/Keyword: Electronic Devices

Search Result 4,513, Processing Time 0.039 seconds

Fundamental Issues in Graphene: Material Properties and Applications

  • Choi, Sung-Yool
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.67-67
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, exhibits fascinating electrical properties, such as a linear energy dispersion relation and high mobility in addition to a wide-range optical absorption and high thermal conductivity. Graphene's outstanding tensile strength allows graphene-based electronic and photonic devices to be flexible, bendable, or even stretchable. Recently many groups have reported high performance electronic and optoelectronic devices based on graphene materials, i.e. field-effect transistors, gas sensors, nonvolatile memory devices, and plasmonic waveguides, in which versatile properties of graphene materials have been incorporated into a flexible electronic or optoelectronic platform. However, there are several fundamental or technological hurdles to be overcome in real applications of graphene in electronics and optoelectronics. In this tutorial we will present a short introduction to the basic material properties and recent progresses in applications of graphene to electronics and optoelectronics and discuss future outlook of graphene-based devices.

  • PDF

SiC MOSFET Compared to Si Power Devices during Short Circuit Test (실리콘 카바이드와 실리콘 MOSFET의 단락회로 특성비교)

  • Nguyen, Thanh That;Ashraf, Ahmed;Park, Joung Hu
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.89-90
    • /
    • 2013
  • Higher power density, higher operational temperature, lower on state resistance and higher switching frequency capabilities of Silicon Carbide (SiC) technology devices compared to Silicon (Si) devices makes it has higher promising market. One of the most developed SiC devices is the power MOSFET. This study tests the SiC MOSFET under short circuit conditions taking into account the effect of gate voltage characteristics. The results will be compared to IGBT and MOSFET Si devices with similar ratings. A tester circuit was designed to perform the short circuit operation.

  • PDF

Effect of electrode material under frequency response characteristics of AIN based FBAR devices (AIN 체적탄성파 소자의 주파수 응답특성에 대한 전극재료의 영향)

  • Kim, Bo-Hyun;Kim, Do-Ypung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1865-1867
    • /
    • 2005
  • Film bulk acoustic resonator (FBAR) devices which adopt an air-gap type (metai/AlN/metal/air/substrate) configuration are fabricated by a novel process. The newly fabricated resonator doesn't employ any supporting layer below it. FBAR devices with the air-gap type are also fabricated using the conventional method. The frequency response characteristics of all the devices fabricated are measured and compared, in terms of the kinds of top and bottom electrode materials. The results show that the better device performance of FBAR devices can be achieved by employing the proposed process.

  • PDF

A Study on the Test Strategy of the Mounted Devices on the Electronic Circuit Board (부품이 실장된 아날로그 회로 보오드의 검사 전략에 대한 연구)

  • Ko, Yun-Seok;Choi, Byung-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2196-2198
    • /
    • 2001
  • Because the circuit board has the structure connected by circuit patterns, the work to test whether the analog devices or circuits such as resisters, capacitors, inductors, diodes, etc. on the tested board is goof or not is very difficult. This paper proposes the test method of identifing the faulted devices or faulted circuit on the circuit board using guarding circuit. The guarding method is the techniqus measuring accurately the value of the devices by separating the electronic devices to be tested from around it. Finally, the availability and accuracy of the proposed test method is verified by applying the technique to a test electronic circuit.

  • PDF

Recent Progress in Dielectric Materials for MLCC Application (MLCC용 유전체 소재의 연구개발 동향)

  • Seo, Intae;Kang, Hyung-Won;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • With the recent increase in demand for electronic devices, multi-layer ceramic capacitors (MLCCs) have become the most important core component. In particular, the next-generation MLCC with extremely high reliability is required for the 4th industrial revolution and electric vehicle applications. Therefore, it is necessary to develop dielectric ceramic materials with high dielectric properties and reliability. During the decades, electrical properties of BaTiO3 based dielectric ceramics, which have been widely used in MLCC industrial field, have been improved by microstructure and defect chemistry control. However, electrical properties of BaTiO3 have reached their limits, and new types of dielectric materials have been widely studied. Based on these backgrounds, this report presents the recent development trends of BaTiO3-based dielectric materials for the next-generation MLCCs, and suggests promising candidates to replace BaTiO3 ceramics.

Theoretical Investigations and measuring Techniques of Geometrical Factor influencing Sensitive Electronic Devices (감도전자장치에 영향을 주는 기하학적 인수의 이론적 연구와 측정)

  • S. K. Lee
    • 전기의세계
    • /
    • v.14 no.1
    • /
    • pp.5-12
    • /
    • 1965
  • In the designs of the sensitive electronic devices such as phase sensitive detector, X-ray diffractometer, and neutron diffractometers, we must take into account the geometrical factors in a coil systems and extraneous stray fields. Input wave forms in such a sensitive electronic devices are often altered by the influence of these factors. Since the magnitude of the stray fields is generally very small, this affection may be removed by applying a good shielding but it is not ease to remove the affection from a geometrical factor. This affection must be however calculated by the theoretical methods and analytical solution in the equation of these factors. The fundamental purpose of this paper lie in the theoretical calculations and practical measurements of the geometrical factor in the coil systems, finite solenoid, and four point prove. In the heoretical calculations, the geometrical factors in the coil systems were calculated by applying the elliptic functions and in the contact points were calculated by applying the elliptic functions and in the contact points were calculated by applying the eigen functions and the infinite series. The measurements were carried out by using the sensitive electronic device made from author's design, as shown in the Fig. 9. The result of this work has verified the essential correctness of theoretical investigations and measuring techniques of geometrical factors on the design of sensitive electronic devices. It also has several advantages such that: (1) all the data obtained may give effective data to designer to work on the field of sensitive electronic devices or microelectronic devices, (2) it has evidently explained the characteristics of electrical investigations and physical definition, and has removed the conventional error of geometrical factors in the coil systems and contact points.

  • PDF

Transient Electronics and Biodegradable Encapsulation Technologies (트랜지언트 전자소자 및 생분해성 봉지막 기술)

  • Moon, Joon Min;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.13-28
    • /
    • 2021
  • Since transient electronic devices can operate under harsh conditions such as electrolytic solutions or inside the body, and be removed by hydrolysis after operation, they can replace conventional electronic devices in various research areas like biomedical implantable devices. Moreover, transient electronic devices that can dissolve in water and enzymes are the focus of the new concept of green technology, which can solve electrical waste issues. However, the surroundings of transient electronic devices can deteriorate internal device components. Thus, an encapsulation strategy is introduced for stable operation in solution by shielding the outside of a device with a passive barrier. This article summarizes recent research trends in transient electronic devices, including their background, dissolution behavior, and encapsulation strategies to enhance reliability by blocking water permeation.

On-road Vehicle Tracking using Laser Scanner with Multiple Hypothesis Assumption

  • Ryu, Kyung-Jin;Park, Seong-Keun;Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • Active safety vehicle devices are getting more attention recently. To prevent traffic accidents, the environment in front and even around the vehicle must be checked and monitored. In the present applications, mainly camera and radar based systems are used as sensing devices. Laser scanner, one of the sensing devices, has the advantage of obtaining accurate measurement of the distance and the geometric information about the objects in the field of view of the laser scanner. However, there is a problem that detecting object occluded by a foreground one is difficult. In this paper, criterions are proposed to manage this problem. Simulation is conducted by vehicle mounted the laser scanner and multiple-hypothesis algorithm tracks the candidate objects. We compare the running times as multi-hypothesis algorithm parameter varies.

Stretchable Transistors Fabricated on Polydimethylsiloxane Elastomers

  • Jung, Soon-Won;Choi, Jeong Seon;Park, Chan Woo;Na, Bock Soon;Lim, Sang Chul;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong;Koo, Jae Bon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.389.2-389.2
    • /
    • 2014
  • Polydimethylsiloxane (PDMS) based electronic devices are widely used for various applications in large area electronics, biomedical wearable interfaces and implantable circuitry where flexibility and/or stretchability are required. A few fabrication methods of electronic devices directly on PDMS substrate have been reported. However, it is well known that micro-cracks appear in the metal layer and in the lithography pattern on a PDMS substrate. To solve the above problems, a few studies for fabrication of stiff platform on PDMS substrate have been reported. Thin-film islands of a stiff region are fabricated on an elastomeric substrate, and electronic devices are fabricated on these stiff islands. When the substrate is stretched, the deformation is mainly accommodated by the substrate, and the stiff islands and electronic devices experience relatively small strains. Here, we report a new method to achieve stiff islands structures on an elastomeric substrate at a various thickness, as the platform for stretchable electronic devices. The stiff islands were defined by conventional photolithography on a stress-free elastomeric substrate. This technique can provide a practical strategy for realizing large-area stretchable electronic circuits, for various applications such as stretchable display or wearable electronic systems.

  • PDF

All-Solid-State Electrochromic Film with WO3/NiO Complementary Structure (WO3/NiO 상호 보완적인 구조의 전고체 전기변색 필름)

  • Shin, Minkyung;Lee, Sun Hee;Seo, Intae;Kang, Hyung-Won;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.275-280
    • /
    • 2022
  • An all-solid-state electrochromic film was fabricated by laminating tungsten oxide (WO3) and nickel oxide (NiO) thin films deposited by a reactive DC magnetron sputtering on flexible ITO films. The influence of oxygen partial pressure on the crystal structure, microstructure, optical properties, and electrochromic properties of WO3 and NiO thin films were investigated. WO3 and NiO films showed the best electrochromic properties under the flow of Ar:O2=80:20 and Ar:O2=90:10, respectively. The EC film fabricated with an optimized WO3 and NiO films showed a high coloration efficiency, a fast response time, and a stable optical modulation. It is expected that flexible EC window films will pave the way for the next-generation energy-saving windows.