• Title/Summary/Keyword: Electronic Devices

Search Result 4,529, Processing Time 0.033 seconds

Aspect of the chief of state guard EMP (Electro Magnetic Pulse) protection system for the consideration (국가원수 경호적 측면에서의 EMP(Electro Magnetic Pulse) 방호 시스템에 대한 고찰)

  • Jung, Joo-Sub
    • Korean Security Journal
    • /
    • no.41
    • /
    • pp.37-66
    • /
    • 2014
  • In recent years, with the development of computers and electronics, electronics and communication technology in a growing and each part is dependent on the cross-referencing makes all electronic equipment is obsolete due to direct or indirect damage EMP. Korea and the impending standoff North Korea has a considerable level of technologies related to the EMP, EMP weapons you already have or in a few years, the development of EMP weapons will complete. North Korea launched a long-range missile and conducted a nuclear test on several occasions immediately after, when I saw the high-altitude nuclear blackmail has been strengthening the outright offensive nuclear EMP attacks at any time and practical significance for the EMP will need offensive skills would improve. At this point you can predict the damage situation of Korea's security reality that satisfy the need, more than anything else to build a protective system of the EMP. The scale of the damage that unforeseen but significant military damage and socio-economic damage and fatalities when I looked into the situation which started out as a satellite communications systems and equipment to attack military and security systems and transportation, finance, national emergency system, such as the damage elsewhere. In General, there is no direct casualties reported, but EMP medical devices that rely on lethal damage to people who can show up. In addition, the State power system failure due to a power supply interruption would not have thought the damage would bring State highly dependent on domestic power generation of nuclear plants is a serious nuclear power plant accident in the event of a blackout phenomenon can lead to the plant's internal problems should see a forecast. First of all, a special expert Committee of the EMP, the demand for protective facilities and equipment and conduct an investigation, he takes fits into your budget is under strict criteria by configuring the contractors should be sifting through. He then created the Agency for verification of performance EMP protection after you have verified the performance of maintenance, maintenance, safety and security management, design and construction company organized and systematic process Guard facilities or secret communications equipment and perfect for the EMP, such as protective equipment maneuver system should take.

  • PDF

Microwave Dielectric Properties of $PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ Ceramics ($PbWO_{4}-TiO_{2}-CuO-B_{2}O_{3}$ 세라믹의 고주파 유전특성)

  • 이경호;최병훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.143-148
    • /
    • 2001
  • PbWO$_4$ can be densified at 85$0^{\circ}C$ and it shows fairy good microwave dielectric properties; dielectric constant($\varepsilon$$_{r}$) of 21.5, quality factor(Q $\times$f$_{0}$) of 37,224 GHz, and temperature coefficient of resonant frequency($\tau$/suf f/) of -31ppm/$^{\circ}C$. Due to its low sintering temperature, PbWO$_4$ can be used as a multilayered chip component at microwave frequency with high electrical performance by using high conductive electrode metals such as Ag and Cu. However, in order to use this material for microwave communication devices, the $\tau$$_{f}$ of PbWO$_4$ must be stabilized to near zero with high Q$\times$f$_{0}$. In present study, PbWO$_4$ was modified by adding TiO$_2$, B$_2$O$_3$, and CuO in order to improve the microwave dielectric properties without increasing the sintering temperature. The addition of TiO$_2$ increased the $\tau$$_{f}$ and $\varepsilon$$_{r}$, due to its high rr(200ppm/$^{\circ}C$) and $\varepsilon$$_{r}$(100). However, the addition of TiO$_2$ reduced the Q$\times$f$_{0}$ value. When the mot ratio of PbWO$_4$ and TiO$_2$ was 0.913:7.087, near zero $\tau$$_{f}$(0.2ppm/$^{\circ}C$) was obtaibed with $\varepsilon$$_{r}$=22.3, and Q$\times$f/$_{0}$=21,443GHz. With this composition, various amount of B$_2$O$_3$ and CuO were added in order to improve the quality factor. The addition, of B$_2$O$_3$ decreased the $\varepsilon$$_{r}$. However, increased Q$\times$f$_{0}$ and $\tau$$_{f}$. When 2.5 wt% of B$_2$O$_3$ was added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ =8.2, $\varepsilon$$_{r}$=20.3, Q$\times$f$_{0}$=54784 GHz. When CuO added to the 0.913PbWO$_4$-0.087TiO$_2$ ceramic, $\tau$$_{f}$ was continuously decreased. And $\varepsilon$$_{r}$ . and Q$\times$f$_{0}$ were increased up to 1.0 wt% then decreased. At 0.1 wt% of CuO addition, the 0.913PbWO$_4$-7.087Ti0$_2$ Ceramic Showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$=4.4ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32,932 GHz.> 0/=32,932 GHz.X>=32,932 GHz.> 0/=32,932 GHz.

  • PDF

Development of Intelligent Severity of Atopic Dermatitis Diagnosis Model using Convolutional Neural Network (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 아토피피부염 중증도 진단 모델 개발)

  • Yoon, Jae-Woong;Chun, Jae-Heon;Bang, Chul-Hwan;Park, Young-Min;Kim, Young-Joo;Oh, Sung-Min;Jung, Joon-Ho;Lee, Suk-Jun;Lee, Ji-Hyun
    • Management & Information Systems Review
    • /
    • v.36 no.4
    • /
    • pp.33-51
    • /
    • 2017
  • With the advent of 'The Forth Industrial Revolution' and the growing demand for quality of life due to economic growth, needs for the quality of medical services are increasing. Artificial intelligence has been introduced in the medical field, but it is rarely used in chronic skin diseases that directly affect the quality of life. Also, atopic dermatitis, a representative disease among chronic skin diseases, has a disadvantage in that it is difficult to make an objective diagnosis of the severity of lesions. The aim of this study is to establish an intelligent severity recognition model of atopic dermatitis for improving the quality of patient's life. For this, the following steps were performed. First, image data of patients with atopic dermatitis were collected from the Catholic University of Korea Seoul Saint Mary's Hospital. Refinement and labeling were performed on the collected image data to obtain training and verification data that suitable for the objective intelligent atopic dermatitis severity recognition model. Second, learning and verification of various CNN algorithms are performed to select an image recognition algorithm that suitable for the objective intelligent atopic dermatitis severity recognition model. Experimental results showed that 'ResNet V1 101' and 'ResNet V2 50' were measured the highest performance with Erythema and Excoriation over 90% accuracy, and 'VGG-NET' was measured 89% accuracy lower than the two lesions due to lack of training data. The proposed methodology demonstrates that the image recognition algorithm has high performance not only in the field of object recognition but also in the medical field requiring expert knowledge. In addition, this study is expected to be highly applicable in the field of atopic dermatitis due to it uses image data of actual atopic dermatitis patients.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.

A study on the strategies to lower technologist occupational exposure according to the performance form in PET scan procedure (PET 검사실 종사자의 업무 행위 별 방사선피폭 조사에 따른 피폭선량 저감화를 위한 연구)

  • Ko, Hyun Soo;Kim, Ho Sung;Nam-Kung, Chang Kyeoung;Yoon, Soon Sang;Song, Jae Hyuk;Ryu, Jae Kwang;Jung, Woo Young;Chang, Jung Chan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.17-29
    • /
    • 2015
  • Purpose For nuclear medicine technologists, it is difficult to stay away from or to separate from radiation sources comparing with workers who are using radiation generating devices. Nuclear medicine technologists work is recognized as an optimized way when they are familiar with work practices. The aims of this study are to measure radiation exposure of technologists working in PET and to evaluate the occupational radiation dose after implementation of strategies to lower exposure. Materials and Methods We divided into four working types by QC for PET, injection, scan and etc. in PET scan procedure. In QC of PET, we compared the radiation exposure controlling next to $^{68}Ge$ cylinder phantom directly to controlling the table in console room remotely. In injection, we compared the radiation exposure guiding patient in waiting room before injection to after injection. In scan procedure of PET, we compared the radiation exposure moving the table using the control button located next to the patient to moving the table using the control button located in the far distance. PERSONAL ELECTRONIC DOSEMETER (PED), Tracerco$^{TM}$ was used for measuring exposed radiation doses. Results The average doses of exposed radiation were $0.27{\pm}0.04{\mu}Sv$ when controlling the table directly and $0.13{\pm}0.14{\mu}Sv$ when controlling the table remotely while performing QC. The average doses of exposed radiation were $0.97{\pm}0.36{\mu}Sv$ when guiding patient after injection and $0.62{\pm}0.17{\mu}Sv$ when guiding patient before injection. The average doses of exposed radiation were $1.33{\pm}0.54{\mu}Sv$ when using the control button located next to the patient and $0.94{\pm}0.50{\mu}Sv$ when using the control button located in far distance while acquiring image. As a result, there were statistically significant differences(P<0.05). Conclusion: From this study, we found that how much radiation doses technologists are exposed on average at each step of PET procedure while working in PET center and how we can reduce the occupational radiation dose after implementation of strategies to lower exposure. And if we make effort to seek any other methods to reduce technologist occupational radiation, we can minimize and optimize exposed radiation doses in department of nuclear medicine. Conclusion From this study, we found that how much radiation doses technologists are exposed on average at each step of PET procedure while working in PET center and how we can reduce the occupational radiation dose after implementation of strategies to lower exposure. And if we make effort to seek any other methods to reduce technologist occupational radiation, we can minimize and optimize exposed radiation doses in department of nuclear medicine.

  • PDF

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Study on behavioral change of estrus in Hanwoo (Korean native cattle) (한우 발정기 행동변화에 대한 연구)

  • Cheon, Si Nae;Yoo, Geum Zoo;Kim, Chan Ho;Jung, Ji Yeon;Kim, Dong Hun;Jeon, Jung Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.825-832
    • /
    • 2020
  • The detection of estrus is very important for the successful reproductive efficiency of cattle. This has prompted the development of electronic estrus detection techniques by using the characterization of estrus behavior. The objective of this study was to investigate the changes in physical activity, mounting behavior and vocalization during estrus in Hanwoo (Korean native cattle). Bio-telemetry devices were attached to 4 multiparous Hanwoo and physical activity was compared, namely mounting behavior and vocalization for 6 days (from 2 days before the day of estrus to 3 days after the day of estrus). Physical activity rapidly increased on the day of estrus (p<0.001) and was frequently observed at night time. Mounting behavior gradually increased, starting from 2 days before the day of estrus and reached its highest level on the day of estrus (p<0.01). The circadian rhythm showed irregularities during this entire period (p>0.05). There was no significant difference in vocalization during the experiment period (p>0.05). In conclusion, we assumed that mounting behavior is an early indicator to detect estrus in Hanwoo and if both mounting behavior and physical activity are considered together it would be possible to detect estrus with a higher probability. Further studies with more information from different sources regarding the measuring of estrus in Hanwoo are needed.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Improving Curing Rate and Physical Properties of Korean Dendropanax Lacquer with Thermal and Photo Initiator by Dual Curing (이중경화법을 이용한 열개시제 및 광개시제가 배합된 황칠도료의 경화속도 촉진 및 물성향상 연구)

  • Hwang, Hyeon-Deuk;Moon, Je-Ik;Park, Cho-Hee;Kim, Hyun-Joong;Hwang, Baik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • The Korean Dendropanax lacquer, made from a natural resinous sap from Dendropanax orbifera Lev., was used as a golden and transparent varnish for the traditional artifacts (armor uits, helmets, arrowheads, etc.) to make them be brilliant golden color. The cured film of the acquer has excellent protective properties such as weatherability, water resistance, and nticorrosive. But, one of disadvantages is that takes a long time and much energy to fulfill curing the lacquer. The chemical constituents of the lacquer contained conjugated diene compounds s the photopolymerizable monomers. These monomers easily polymerized in sunlight to form olden-colored, hard-coating films in a short time. Photooxidation may be one of the most mportant reactions in the chemistry of the lacquer. Although the Korean Dendropanax Lacquer hould be dried to a thoroughly dry stage to achieve optimal film properties, curing with elevated emperatures may be required for the protracted curing time at atmospheric temperature. So we ntended to accelerate the curing rate of the lacquer by dual curing of thermal and radiation uring. The effect of thermal initiator on the thermal curing reaction was evaluated by monitoring he changes in double bond peak with FT-IR. Then the curing rate of the lacquer blended with hermal initiator and photoinitiator together was measured during dual curing using a RPT with V spot curing machine. Thermal initiator not only accelerated the curing rate but also improved he physical property. And the curing rate of the Korean Dendropanax lacquer was improved by ual curing method of thermal and UV curing. According to these results, the application area of he Korean Dendropanax lacquer could be expanded to surface coatings for electronic devices uch as mobile phones or electronics.