• Title/Summary/Keyword: Electronic Compass

Search Result 38, Processing Time 0.026 seconds

Robust Electric Compass to Dynamic Magnetic Field Interference

  • Ko, Jae-Pyung;Kim, Yang-Hwan;Kang, Woong-Ki;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1814-1819
    • /
    • 2004
  • The purpose of this research is to improve the reliability of automobile navigation system that utilizes the magnetic compass for localization. On account of its sensitiveness against the dynamic external interference of the magnetic field, the electronic compass itself is not accurate enough to be used for the localization compared to the gyro-compass. To overcome this shortcoming, in this research, a robust electronic compass is designed by using two magnetic compasses to cancel out the dynamic interferences efficiently. That is, a dual compass predictive calibration algorithm against irregular external interference of magnetic field is newly proposed and implemented in this paper. When the dynamic interference can be eliminated from the electronic compass, it becomes much accurate than the gyro-based system that suffers from the accumulative drift error. The reliability and performance of the designed system have been verified through the real driving experiments.

  • PDF

Robust Electric Compass to Dynamic Magnetic Field Interference (동적간섭자기장에 강인한 전자컴파스)

  • Ko Jae-Pyung;Kang Woong-Ki;Kim Yang-Hwan;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • The purpose of this research is to improve the reliability of automobile navigation system that utilizes the magnetic compass for localization. On account of its sensitiveness against the dynamic external interference of the magnetic field, the electronic compass itself is not accurate enough to be used for the localization compared to the gyro-compass. To overcome this shortcoming, in this research, a robust electronic compass is designed by using two magnetic compasses to cancel out the dynamic interences efficiently. That is, a dual compass predictive calibration algorithm against irregular external interference of magnetic field is newly proposed and implemented in this paper. When the dynamic interference can be eliminated from the electronic compass, it becomes much accurate than the gyro-based system that suffers from the accumulative drift error. The reliability and performance of the designed system have been verified through the real driving experiments.

Development of Electronic Compass using Magnetic Sensors (자기 센서를 이용한 전자 컴퍼스 개발)

  • Hong, Chang-Hyun;Kim, Young-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Recently fishing industry is interested in efficiency and automation to acquire the international competitive power of national fishing industry. As an automation device of fishing boat, there are electric compasses using GPS and terrestrial magnetic sensor. Electric compass can be minimum size, high effectiveness with keeping the characteristic of a magnetic compass. This can be used a heading angle sensor to construct auto-navigation system in a small size ship. This paper develop electronic compass system that has serial output signal in NMEA 0183 and demonstrates the possibility of the electronics compass in navigation system for a small sized ship.

Analysis of Measured Azimuth Error on Sensitivity Calibration Routine (Sensitivity Calibration 루틴 수행시 Tilt에 의한 방위각 측정 오차의 분석)

  • Woo, Kwang-Joon;Kang, Su-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The accuracy of MR sensor-based electronic compass is influenced by the temperature drift and DC offset of the MR sensor and the OP-amp, the magnetic distortion of nearby magnetic materials, and the compass tilt We design the 3-axis MR sensor and accelerometers-based electronic compass which is compensated by the set/reset pulse switching method on the temperature drift and DC offset, by the execution of hard-iron calibration routine on the magnetic distortion, and by the execution of the Euler rotational equation on the compass tilt. We qualitatively analyze the measured azimuth error on the execution of sensitivity calibration routine which is the normalization process on the different sensitivity of each MR sensor and the different gain of each op-amps. This compensation and analytic result make us design the one degree accuracy electronic compass.

A Study the Digital Electronic Compass (디지털 전자콤파스에 대한 연구)

  • Yun, Jae-Jun;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.245-251
    • /
    • 2005
  • Ship's auto pilot is must necessary the azimuth data, which is supported by a gyro, geomagnetism and GPS compass. The gyro compass is operation of stability & correct , therefore it is used by big size shipping because of high cost. The other side, medium and small size shipping are used the geomagnetism and GPS compass of low cost. This paper have studied that the two jobs are going on at the same time both of there's advantage. Which is asked the algorithm for stability azimuth data on reject methode the defect of respect with geomagnetism & GPS compass.

  • PDF

Spatial and Directional Sensation Prosthesis for the Blind (시각장애인을 위한 공간 및 방향감각 보조시스템)

  • 노세현;박우찬;신현철;김상호;김영곤;김광년;정동근
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • In this study for the prosthesis of the spatial and directional sensation for the blind, an ultrasonic scale system and an electronic compass system were developed. The ultrasonic scale utilizes 40 ㎑ sound for the detection of distance to the barrier and the spatial information is transferred to the blind by various sound interval, which is proportional to the distance. The electronic compass utilizes a magnetoresistor bridge for the detection of the magnetic field strength of earth in horizontal plane. The information for the direction of the earth's north is transferred by tactile stimuli by a vibrating motor band around upper head. Detection distance of the ultrasonic scale is ranged from 0.065 to 3.26 meters, and the detection angle resolution of the electronic compass is about 22.5 degrees. The integrated system of the ultrasonic scale and the electronic compass was developed. Distance information is converted to the location of the tactile stimulation along the clockwise direction by a vibrating motor according to the distance installed around upper head of the blind. The intent of this article is to provide an practical prosthetic tool of spatial and directional sensation for the blind. Daily practice of this system will improve the usefulness of this system.

A Study on Satellite Auto Tracking Algorithm Using Electronic Compass And Left-Right Tracking Method (방향 센서와 좌우 Tracking법을 이용한 위성 자동 추적 알고리즘에 관한 연구)

  • 민경식;손병선;박세현;김동철;임학규;김상태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.124-127
    • /
    • 2000
  • This paper describes the algorithm for more fast tracking by compensation of the staring angle of antenna to receive the satellite signal changed by the mobile vehicle direction. The staring angle is compensated by signal processing from the electronic compass which is called VECTOR2X, and a left-right tracking method. Especially, when mobile vehicle is turning with high speed, it is observed a result which has more fast tracking time by using angle tracking technique compensated by electronic compass than one by only left right tracking method.

  • PDF

A Study on the Digital Electronic Compass by Integration of GPS Receiver and Earth's Magnetic Field Sensor (GPS수신기와 지자기센서 병행식 디지털 전자콤파스에 대한 연구)

  • Yun, Jae-Jun;Park, Gyei-Kark;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 2005
  • An autopilot system of a ship is very important for a safe and convenient navigation, which is realized with getting an azimuth data from a gyrocompass, a magnetic compass and a GPS(Global Positioning System) compass. Magnetic compass an azimuth error is generated by a vessel magnetism material such as steels. The magnetic pole is detected by the magnetic field sensor, it does not coincide with the true north, therefore, the detected azimuth data can not but accompany error. In this paper, in order to detect the minimum change of azimuth data which generates errors of azimuth information, a search algorithm using the Kalman Filtering method is utilized. The digital electronic compass is designed with the integration algorithm using the merits of an earth's magnetic field sensor and a GPS receiver.

  • PDF

Accuracy Analysis using Assistant Sensor Integration on Various IMU during GPS Signal Blockage (GPS 신호 단절 상황에서 IMU 사양에 따른 보조센서 통합을 이용한 정확도 분석)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the performances of a medium grade IMU which is aimed for Mobile Mapping System and a low grade IMU for pedestrian navigation are analyzed through simulations under GPS signal blockage. In addition, an analysis on the accuracy improvement of barometer, electronic compass, or multi-sensor(combination of barometer and electronic compass) to correct medium grade or low grade IMU errors in the situation of GPS signal blockage is performed. With the medium grade IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 5m when the block time is over 30 seconds. When we correct IMU with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 60 seconds. In addition, barometer is more effective than the electronic compass when they are combined. In case of low grade IMU like MEMS IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 20m when the block time is over 15 seconds. When we correct INS with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 15 seconds in simulation results. On the contrary to medium grade IMU, electronic compass is more effective than the barometer in case of low velocity such as pedestrian navigation. It is expected that the analysis suggested a method to decrease position or attitude error using aided sensor integration when MMS or pedestrian navigation is operated under 1he environment of GPS signal blockage.

Spreader Pose Control Using Dual-electric Compasses (Dual compasses를 이용한 스프레더의 자세 제어)

  • Han, Sun-Sin;Jeong, Hee-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.861-867
    • /
    • 2007
  • A spreader pose control system using dual-electric compasses has been implemented by measuring the skew angle of the spreader with dual-electric compasses. In the conventional spreader pose measurement, CCD cameras, laser sensors or tilt sensors are mostly used. However those sensors are not only sensitive to the weather and disturbances but also expensive to build the system. To overcome the shortcomings, an inexpensive and efficient system to control the spreader pose has been implemented using the dual-magnetic compasses. Since the spreader iron-structures are noise sources to the magnetic compass, it is not considered to use the magnetic compass to measure the orientation of the spreader. An algorithm to eliminate the interferences of metal structures to the dual compasses has been developed in this paper. The 10:1 reduction model of a spreader control system is implemented and the control performance is demonstrated to show the effectiveness of the dual-magnetic compasses proposed in this research.