• Title/Summary/Keyword: Electron-beam Evaporation

Search Result 218, Processing Time 0.029 seconds

Optical and mechnical properties of ${Ta_2}{O_5}$ optical thin films by ion assisted deposition (이온 보조 증착한 ${Ta_2}{O_5}$ 광학 박막의 광학적 및 기계적 특성 분석)

  • 류태욱;김동진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.147-151
    • /
    • 2000
  • We deposited the ion assisted ${Ta_2}{O_5}$ films and conventional thermal evaporated ${Ta_2}{O_5}$ films by using electron beam gun, and measured the optical properties and mechanical properties of the fabricated films according to the evaporation conditions. In the case of the TazOs films by oxygen ion assisted deposition with the anode voltage of 120 V, and current density of $50~500\muA/cm^2$, the refractive index exhibited 2.15 which was higher than the conventionally deposited film index 1.94 and the tensile stress exhibited $5.0\times10^8 dyne/cm^2$ which was lower than $7.0\times10^8 dyne/cm^2$. This properties coincided with the optical and mechanical properties of the films deposited at the elevated substrate temperature of $230^{\circ}C$. In the case of the argon ion assisted films the tensile stress was decreased but the absorption existed at the short wavelength in the visible spectral region. And all the fabricated films were found to be amorphous by the X-ray diffraction analysis. lysis.

  • PDF

Highly Ordered TiO2 nanotubes on pattered Si substrate for sensor applications

  • Kim, Do-Hong;Shim, Young-Seok;Moon, Hi-Gyu;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jang, Ho-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.66-66
    • /
    • 2011
  • Anodic titanium dioxide (TiO2) nanotubes are very attractive materials for gas sensors due to its large surface to volume ratios. The most widely known method for fabrication of TiO2 nanotubes is anodic oxidation of metallic Ti foil. Since the remaining Ti substrate is a metallic conductor, TiO2 nanotube arrays on Ti are not appropriate for gas sensor applications. Detachment of the TiO2 nanotube arrays from the Ti Substrate or the formation of electrodes onto the TiO2 nanotube arrays have been used to demonstrate gas sensors based on TiO2 nanotubes. But the sensitivity was much lower than those of TiO2 gas sensors based on conventional TiO2 nanoparticle films. In this study, Ti thin films were deposited onto a SiO2/Si substrate by electron beam evaporation. Samples were anodized in ethylene glycol solution and ammonium fluoride (NH4F) with 0.1wt%, 0.2wt%, 0.3wt% and potentials ranging from 30 to 60V respectively. After anodization, the samples were annealed at $600^{\circ}C$ in air for 1 hours, leading to porous TiO2 films with TiO2 nanotubes. With changing temperature and CO concentration, gas sensor performance of the TiO2 nanotube gas sensors were measured, demonstrating the potential advantages of the porous TiO2 films for gas sensor applications. The details on the fabrication and gas sensing performance of TiO2 nanotube sensors will be presented.

  • PDF

Effect of In2O3 Doping on the Properties of ZnO Films as a Transparent Conducting Oxide (투명전도성 ZnO 박막의 특성에 미치는 In2O3 첨가에 따른 영향)

  • Lee, Choon-Ho;Kim, Sun-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.57-61
    • /
    • 2004
  • Zinc Oxide (ZnO) have the crystal structure of wurtzite which is semiconducting oxide with band gap energy of 3.3eV. $In_2O_3$-doped ZnO films were fabricated by electron beam evaporation at $400^{\circ}C$ and their characteristics were investigated. The content of $In_2O_3$ in ZnO films had a marked effect on the electrical properties of the films. As $In_2O_3$ content decreased. $In_2O_3$-doped ZnO films was converted amorphous into crystallized films and showed a better characteristics generally as a transparent conducting oxide. As $In_2O_3$-doped ZnO films were prepared by $In_2O_3$-doped ZnO pellet with 0.2at% of $In_2O_3$ content, the value of resistivity was about $6.0 {\times} 10^{-3} {\Omega}cm$. The transmittance was higher than 85% throughout the visible range.

Property of Composite Silicide from Nickel Cobalt Alloy (니켈 코발트 합금조성에 따른 복합실리사이드의 물성 연구)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • For the sub-65 nm CMOS process, it is necessary to develop a new silicide material and an accompanying process that allows the silicide to maintain a low sheet resistance and to have an enhanced thermal stability, thus providing for a wider process window. In this study, we have evaluated the property and unit process compatibility of newly proposed composite silicides. We fabricated composite silicide layers on single crystal silicon from $10nm-Ni_{1-x}Co_x/single-crystalline-Si(100),\;10nm-Ni_{1-x}Co_x/poly-crystalline-\;Si(100)$ wafers (x=0.2, 0.5, and 0.8) with the purpose of mimicking the silicides on source and drain actives and gates. Both the film structures were prepared by thermal evaporation and silicidized by rapid thermal annealing (RTA) from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, surface composition, were investigated using a four-point probe, a field emission scanning probe microscope, a field ion beam, an X-ray diffractometer, and an Auger electron depth profi1ing spectroscopy, respectively. Finally, our newly proposed composite silicides had a stable resistance up to $1100^{\circ}C$ and maintained it below $20{\Omega}/Sg$., while the conventional NiSi was limited to $700^{\circ}C$. All our results imply that the composite silicide made from NiCo alloy films may be a possible candidate for 65 nm-CMOS devices.

Effects of ZrO2 Addition on Optical and Electrical Properties of MgO Films as a Protective Layer for AC PDPs (ZrO2 첨가에 따른 AC PDP 보호막용 MgO 박막의 광학적 전기적 특성)

  • Kim, Chang-Il;Jung, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Choi, Eun-Ha;Jung, Seok;Kim, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.422-426
    • /
    • 2008
  • The effects of an addition of $ZrO_2$ on the microstructure and electrical properties of MgO films as a protective layer for AC plasma display panels were investigated. MgO + a 200 ppm $ZrO_2$ protective layer prepared by e-beam evaporation exhibited a secondary electron emission coefficient ($\gamma$) that was improved by 21% compared to that of a pure MgO protective layer. The relative density and Vickers hardness increased with a further addition of $ZrO_2$. These results suggest that the discharge properties and optical properties of MgO protective layers are closely related to the relative density and Vickers hardness. The good optical and electrical properties of $\gamma$, at 0.080, a grain size of $19\;{\mu}m$ and an optical transmittance of 91.93 % were obtained for the MgO + 200 ppm $ZrO_2$ protective layer sintered at $1700^{\circ}C$ for 5 hrs.

Reactive RF Magnetron Sputtering에 의해 성장된 Si(100) 과 Si(111) 기판 위에 증착된 $CeO_2$ 박막의 구조적, 전기적 특성

  • 김진모;김이준;정동근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.103-103
    • /
    • 1999
  • CeO2 는 cubic 구조의 일종인 CeF2 구조를 가지며 격자 상수가 0.541nm로 Si의 격자 상수 0.543nm와 거의 비슷하여 Si과의 부정합도가 0.35%에 불과하여 CeO2를 Si 기판 위에 에피택셜하게 성장시킬 수 있는 가능성이 크다. 따라서 SOI(Silicon-On-Insulator) 구조의 실현을 위하여 Si 기판위에 CeO2를 에피택셜하게 성장시키려는 많은 노력이 있었다. 또한 CeO2 는 열 적으로 대단히 안정된 물질로서 금속/강유전체/반도체 전계효과 트랜지스터(MFSFET : metal-ferroelectric-semiconductor field effect transistor)에서 ferroelectric 박막과 Si 기판사이에 완충층으로 사용되어 강유전체의 구성 원자와 Si 원자들간의 상호 확산을 방지함으로써 경계면의 특성을 향상시기키 위해 사용된다. e-beam evaporation와 laser ablation에 의한 Si 기판 위의 CeO2 격자 성장에 관한 많은 보고서가 있다. 이 방법들은 대규모 생산 공정에서 사용하기 어려운 반면 RF-magnetron sputtering은 대규모 반도체 공정에 널리 쓰인다. Sputtering에 의한 Si 기판위의 CeO2 막의 성장에 관한 보고서의 수는 매우 적다. 이 논문에서는 Ce target을 사용한 reactive rf-magnetron sputtering에 의해 Si(100) 과 Si(111) 기판위에 성장된 CeO2 의 구조 및 전기적 특성을 보고하고자 한다. 주요한 증착 변수인 증착 power와 증착온도, Seed Layer Time이 성장막의 결정성에 미치는 영향을 XRD(X-Ray Diffractometry) 분석과 TED(Transmission Electron Diffration) 분석에 의해 연구하였고 CeO2 /Si 구조의 C-V(capacitance-voltage)특성을 분석함으로써 증차된 CeO2 막과 실리콘 기판과의 계면 특성을 연구하였다. CeO2 와 Si 사이의 계면을 TEM 측정에 의해 분석하였고, Ce와 O의 화학적 조성비를 RBS에 의해 측정하였다. Si(100) 기판위에 증착된 CeO2 는 $600^{\circ}C$ 낮은 증착률에서 seed layer를 하지 않은 조건에서 CeO2 (200) 방향으로 우선 성장하였으며, Si(111) 기판 위의 CeO2 박막은 40$0^{\circ}C$ 높은 증착률에서 seed layer를 2분이상 한 조건에서 CeO2 (111) 방향으로 우선 성장하였다. TEM 분석에서 CeO2 와 Si 기판사이에서 계면에서 얇은 SiO2층이 형성되었으며, TED 분석은 Si(100) 과 Si(111) 위에 증착한 CeO2 박막이 각각 우선 방향성을 가진 다결정임을 보여주었다. C-V 곡선에서 나타난 Hysteresis는 CeO2 박막과 Si 사이의 결함때문이라고 사료된다.

  • PDF

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 층착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • 박계춘;정운조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase CuInS$_2$ thin film with the highest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second highest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$ was well made with chalcopyrite structure at substrate temperature of 70 $^{\circ}C$, annealing temperature of 25$0^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 ${\mu}{\textrm}{m}$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that CuInS$_2$ thin film was 5.60 $\AA$ and 11.12 $\AA$ respectively. Single phase CuInS$_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type CuInS$_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of CuInS$_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type CuInS$_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, 3.0x10 $^4$ $cm^{-1}$ / and 1.48 eV respectively. When CuAn composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film was 821 nm, 6.0x10$^4$ $cm^{-1}$ / and 1.51 eV respectively.

  • PDF

원자층증착법을 이용한 Y2O3 박막 형성 및 저항 스위칭 특성

  • Jeong, Yong-Chan;Seong, Se-Jong;Lee, Myeong-Wan;Park, In-Seong;An, Jin-Ho;Rao, Venkateswara P.;Dussarrat, Christian;Noh, Wontae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.229.2-229.2
    • /
    • 2013
  • Yttrium oxide (Y2O3)는 band gap이 5.5 eV 정도로 상대적으로 넓고, 굴절상수가 1.8, 유전율이 10~15, Silicon 과의 격자 불일치가 작은 특성을 가지고 있다. 또한 녹는점이 높아 열적으로 안정하기 때문에 전자소자 및 광학소자에 다양하게 응용되는 물질이다. Y2O3 박막은 다양한 방법으로 증착할 수 있는데, 그 방법에는 e-beam evaporation, laser ablation, sputtering, thermal oxidation, metal-organic chemical vapor deposition, and atomic layer deposition (ALD) 등이 있다. ALD는 기판 표면에 흡착된 원자들의 자기 제한적 반응에 의하여 박막이 증착되기 때문에 박막 두께조절이 용이하고 step coverage와 uniformity 측면에서 큰 장점이 있다. 이전에는 Y(thd)3 and Y(CH3Cp)3 와 같은 금속 전구체를 이용하여 ALD를 진행하여, 증착 속도가 낮고 defect이 많아 non-stoichiometric한 조성의 박막이 증착되는 문제점이 있었다. 이번 연구에서는, (iPrCp)2Y(iPr-amd)와 탈이온수를 사용하여 Y2O3 박막을 증착하였다. Y2O3 박막 증착에 사용한 Y 전구체는 상온에서 액체이고 $192^{\circ}C$ 에서 1 Torr의 높은 증기압을 갖는다. Y2O3 박막 증착을 위하여 Y 전구체는 $150^{\circ}C$ 로 가열하여 N2 gas를 이용하여 bubbling 방식으로 공정 챔버 내로 공급하였다. Y2O3 박막의 ALD window는 $250{\sim}350^{\circ}C$ 였으며, Y 전구체의 공급시간이 5초에 다다르자 더 이상 증착 두께가 증가하지 않는 자기 제한적 반응을 확인할 수 있었다. 그리고 증착된 Y2O3 박막의 특성 분석을 위해 Atomic force microscopy (AFM)과 X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) 를 진행하였다. 박막의 Surface morphology 는 매끄럽고 uniform 하였으며, 특히 고체 금속 전구체를 사용했을 때와 비교하여 수산화물이 거의 없는 박막을 얻을 수 있었다. 그리고 조성 분석을 통해 증착된 Y2O3 박막이 stoichiometric하다는 것을 알수 있었다. 또한 metal-insulator-metal (MIM) 구조 (Ru/Y2O3/Ru) 의 resistor 소자를 형성하여 저항 스위칭 특성을 확인하였다.

  • PDF

Properties of ZnO nanostructures by metal deposited on Si substrates (Metal 증착한 Si 기판 상의 ZnO 나노 구조 특성)

  • Jang, Hyeon-Gyeong;Jung, Mi-Na;Park, Seung-Hwan;Shin, Dae-Hyeon;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1034-1037
    • /
    • 2005
  • The variation of shapes and related properties of ZnO nanostructures grown on the metal pattern and Si substrate have been investigated. Ni, Cr metal patterns were formed on Si (111) substrates by e-beam evaporation, and ZnO nanostructures were fabricated on it by using thermal evaporation of Zn powder in air. Growth temperature was controlled from 500 $^{\circ}$C to 700 $^{\circ}$C. When the growth temperature was relatively low, no considerable effect was found. However, UV emission intensity decreased, and Green-emission intensity, which is regarded as originated from the defect state in the ZnO nanostructure, increased as growth temperature increase. Also, the variation of nanostructure shape at high temperature (700 $^{\circ}$C) is understood in terms of the enhanced incorporation of metal vapor during the nanostructure formation.

  • PDF

Analysis of Surface Plasmon Resonance on Periodic Metal Hole Array by Diffraction Orders

  • Hwang, Jeong-U;Yun, Su-Jin;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.176-177
    • /
    • 2013
  • Surface plasmon polaritons (SPPs) have attracted the attention of scientists and engineers involved in a wide area of research, microscopy, diagnostics and sensing. SPPs are waves that propagate along the surface of a conductor, usually metals. These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of conductor. In this interaction, the free electrons respond collectively by oscillating in resonance with the light wave. The resonant interaction between the surface charge oscillation and the electromagnetic field of the light constitutes the SPPs and gives rise to its unique properties. In this papers, we studied theoretical and experimental extraordinary transmittance (T) and reflectance (R) of 2 dimensional metal hole array (2D-MHA) on GaAs in consideration of the diffraction orders. The 2d-MHAs was fabricated using ultra-violet photolithography, electron-beam evaporation and standard lift-off process with pitches ranging from 1.8 to $3.2{\mu}m$ and diameter of half of pitch, and was deposited 5-nm thick layer of titanium (Ti) as an adhesion layer and 50-nm thick layer of gold (Au) on the semiinsulating GaAs substrate. We employed both the commercial software (CST Microwave Studio: Computer Simulation Technology GmbH, Darmstadt, Germany) based on a finite integration technique (FIT) and a rigorous coupled wave analysis (RCWA) to calculate transmittance and reflectance. The transmittance was measured at a normal incident, and the reflectance was measured at variable incident angle of range between $30^{\circ}{\sim}80^{\circ}$ with a Nicolet Fourier transmission infrared (FTIR) spectrometer with a KBr beam splitter and a MCT detector. For MHAs of pitch (P), the peaks ${\lambda}$ max in the normal incidence transmittance spectra can be indentified approximately from SP dispersion relation, that is frequency-dependent SP wave vector (ksp). Shown in Fig. 1 is the transmission of P=2.2 um sample at normal incidence. We attribute the observation to be a result of FTIR system may be able to collect the transmitted light with higher diffraction order than 0th order. This is confirmed by calculations: for the MHAs, diffraction efficiency in (0, 0) diffracted orders is lower than in the (${\pm}x$, ${\pm}y$) diffracted orders. To further investigate the result, we calculated the angular dependent transmission of P=2.2 um sample (Fig. 2). The incident angle varies from 30o to 70o with a 10o increment. We also found the splitting character on reflectance measurement. The splitting effect is considered a results of SPPs assisted diffraction process by oblique incidence.

  • PDF