• Title/Summary/Keyword: Electron range

Search Result 1,836, Processing Time 0.035 seconds

Metal-organic Chemical Vapor Deposition of Uniform Transition Metal Dichalcogenides Single Layers and Heterostructures (유기금속화학기상증착법을 이용한 전이금속 칼코게나이드 단일층 및 이종구조 성장)

  • Jang, Suhee;Shin, Jae Hyeok;Park, Won Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.119-125
    • /
    • 2020
  • Transition metal dichalcogenides (TMDCs), two-dimensional atomic layered materials with direct bandgap in the range of 1.1-2.1 eV, have attracted a lot of research interest due to their high response to light and capability to build new types of artificial heterostructures. However, the large-area synthesis of high-quality and uniform TMDC films with vertical-stacked heterostructure still remains challenge. In this study, we have developed a metal-organic chemical vapor deposition (MOCVD) system for TMDCs and conducted a systematic study on the growth of single-layer TMDCs and their heterostructures. In particular, using a bubbler-type organometallic compound sources, the concentration and flow rate of each source can be precisely controlled to obtain uniformly single-layered MoS2 and WS2 films over the centimeter scale. In addition, the MoS2/WS2 vertical heterostructure was achieved by growing WS2 film directly on the MoS2 film, as confirmed by electron microscopy, UV-visible spectrophotometer, Raman spectroscopy, and photoluminescence spectroscopy.

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide (Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응)

  • Baek, Seo-Hyeon;Youn, Kyunghee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.159-168
    • /
    • 2022
  • Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Improvement of lower hybrid current drive systems for high-power and long-pulse operation on EAST

  • M. Wang;L. Liu;L.M. Zhao;M.H. Li ;W.D. Ma;H.C. Hu ;Z.G. Wu;J.Q. Feng ;Y. Yang ;L. Zhu ;M. Chen ;T.A. Zhou;H. Jia;J. Zhang ;L. Cao ;L. Zhang ;R.R. Liang;B.J. Ding ;X.J. Zhang ;J.F. Shan;F.K. Liu ;A. Ekedahl ;M. Goniche ;J. Hillairet;L. Delpech
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4102-4110
    • /
    • 2022
  • Aiming at high-power and long-pulse operation up to 1000 s, some improvements have been made for both 2.45 GHz and 4.6 GHz lower hybrid (LH) systems during the recent 5 years. At first, the guard limiters of the LH antennas with graphite tiles were upgraded to tungsten, the most promising material for plasma facing components in nuclear fusion devices. These new guard limiters can operate at a peak power density of 12.9 MW/m2. Strong hot spots were usually observed on the old graphite limiters when 4.6 GHz system operated with power >2.0 MW [B. N. Wan et al., Nucl. Fusion 57 (2017) 102019], leading to a reduction of the maximum power capability. With the new limiters, 4.6 GHz LH system, the main current drive (CD) and electron heating tool for EAST, can be operated with power >2.5 MW routinely. Long-pulse operation up to 100 s with 4.6 GHz LH power of 2.4 MW was achieved in 2021 and the maximal temperature on the guard limiters measured by an infrared (IR) camera was about 540 ℃, much below the permissible value of tungsten material (~1200 ℃). A discharge with a duration of 1056 s was achieved and the 4.6 GHz LH energy injected into the plasma was up to 1.05 GJ. Secondly, the fully-active-multijunction (FAM) launcher of 2.45 GHz system was upgraded to a passive-active-multijunction (PAM), for which the density of optimum coupling was relatively low (below the cut-off value). Good coupling with reflection coefficient ~3% has been achieved with plasma-antenna distance up to 11 cm for the new PAM. Finally, in order to eliminate the effect of ion cyclotron range of frequencies (ICRF) wave on 4.6 GHz LH wave coupling, the location of the ICRF launcher was changed to a port that is located 157.5° toroidally from the 4.6 GHz LH system and is not magnetically connected.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃) (고온 (300~1000 ℃)에서 티타늄 금속시편의 표면 산화거동)

  • Park, Yang-Soon;Han, Sun-Ho;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of $300{\sim}1000^{\circ}C$, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At $300^{\circ}C$, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number ($cm^{-1}$) and angle($^{\circ}$) due to the more oxygen diffusion into titanium metal. At $700^{\circ}C$, $Ti_3O$ (hexagonal phase) was identified by X-ray diffractometer. $TiO_2$ (rutile, tetragonal phase) layer was produced on the surface of the specimen below $1{\mu}m$ in thickness at $600^{\circ}C$, and grown about $2{\mu}m$ at $700^{\circ}C$ and with $110{\mu}m$ in thickness at $1000^{\circ}C$. Above $900^{\circ}C$, (110) plane of the crystal on the surface of rutile-$TiO_2$ layer was grown.

Properties on the Strength of Polymer Concrete Using Nano MMT-UP Composite (나노 MMT-폴리머 복합체를 이용한 폴리머 콘크리트의 강도 특성)

  • Jo, Byung-Wan;Moon, Rin-Gon;Park, Seung-Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.761-766
    • /
    • 2006
  • Polymer composite are increasingly considered as structural components for use in civil engineering, on account of their enhanced strength-to-weight ratios. Unsaturated polyester (UP) resin have been widely used for the matrix of composites such as FRP and polymer composite, due to its excellent adhesive. Polymer nanocomposites are new class of composites derived from the nano scale inorganic particles with dimensions typically in the range of 1 to 1000 nm that are dispersed in the polymer matrix homogeneously. Owing to the high aspect ratio of the fillers, mechanical, thermal, flame, retardant and barrier properties are enhanced without significant loss of clarity, toughness or impact strength. To prepare the MMT (Montmorillonite)-UP exfoliated nanocomposites, UP was mixed with MMT at $60^{\circ}C$ for 3 hours by using pan mixer. XRD (X-ray diffraction) pattern of the composites and TEM (Transmission Electron Micrographs) showed that the interlayer spacing of the modified MMT were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified MMT were higher than those of the composites with unmodified MMT. The thermal stability of MMT-UP nanocomposite is better than that of pure UP, and its glass transition temperature is higher than that of pure UP. The polymer concrete made with MMT-UP nanocomposite has better mechanical properties than of pure UP. Therefore, it is suggested that strength and elastic modulus of polymer concrete was found to be positively tensile strength and tensile modulus of the MMT-UP nanocomposites.

Identification of the Materials of the Decorative Pieces Excavated from Geumnyeongchong Tomb (금령총 출토 장식편 재질 규명)

  • Lee Gyuhye;Shin Seungchul;Gwak Hongin;Yang Seokjin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.89-100
    • /
    • 2023
  • Museum collections are comprised of a variety of materials, and different scientific examinations are being conducted according to the types and production properties of the materials, but insufficient research has been carried out on ultra-small artifacts. To identify the material characteristics of the white ultra-small materials excavated from Geumnyeongchong tomb, this study carried out a wide range of non-destructive analyses (specific gravity, microscopy, nano-computed tomography (Nano-CT), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Raman spectroscopy) and compared the said artifacts with the Goryeo-era burial accessories examined in prior research. Non-destructive analysis confirmed the presence of aragonite, which mainly consists of calcium carbonate (CaCO3) as the constituent mineral, and identified the material used for the ornaments as the gemstone pearl based on its growth lines. This study concludes that pearls began to be used in the ancient Korean Peninsula in the 6th century. It is expected that scientific examinations of the white ultra-small artifacts will yield information about the social culture of the time.

The Simulation for the Organization of Fishing Vessel Control System in Fishing Ground (어장에 있어서의 어선관제시스템 구축을 위한 모의실험)

  • 배문기;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.175-185
    • /
    • 2000
  • This paper described on a basic study to organize fishing vessel control system in order to control efficiently fishing vessel in Korean offshore. It was digitalized ARPA image on the fishing processing of a fleet of purse seiner in conducting fishing operation at Cheju offshore in Korea as a digital camera and then simulated by used VTMS. Futhermore, it was investigated on the application of FVTMS which can control efficiently fishing vessels in fishing ground. The results obtained were as follows ; (1) It was taken 16 minutes and 35 minutes to casting and hauling net in fishing processing respectively. The length of rope pulled by scout boat was 200m, tactical diameter in casting net was 340.8m, turning speed was 6kts as well. (2) The processing of casting and hauling net was moved to SW, NE as results of simulation when the current direction and speed set into NE, 2kts and SW, 2kts respectively. Such as these results suggest that can predict to control the fishing vessel previously with information of fishing ground, fishery and ship's maneuvering, etc. (3) The control range of VTMS radar used in simulation was about 16 miles. Although converting from a radar of the control vessel to another one, it was continuously acquired for the vector and the target data. The optimum control position could be determined by measuring and analyzing to distance and direction between the control vessel and the fleet of fishing vessel. (4) The FVTMS(fishing vessel traffic management services) model was suggested that fishing vessels received fishing conditions and safety navigation information can operate safely and efficiently.

  • PDF

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.