• Title/Summary/Keyword: Electron irradiation

Search Result 1,014, Processing Time 0.026 seconds

The Effect of Electron Beam Irradiation on Discoloration and Thermal Property of HDPE Filled with Antioxidants and UV Stabilizers (전자선 조사에 따른 산화방지제 및 자외선안정제 첨가 HDPE의 변색 영향과 열적 특성 분석)

  • Jeun, Joon Pyo;Jung, Seung Tae;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • In this study, we fabricated high density polyethylene (HDPE) composites filled with antioxidants and UV stabilizers. The electron beam irradiation on the fabricated composites was carried out over a range of absorbed doses from 50 to 200 kGy to confirm the changes of discoloration. The changes of discoloration were characterized using a color difference meter and FT-IR for confirming the changes of the color difference and structural change. It was observed that the color difference of IRGANOX 1010-, IRGAFOS 168-, and TINUVIN 328- added HDPE was higher than that of the control HDPE by electron beam irradiation. The melting temperature of UV stabilizer-added HDPE was not significantly changed by electron beam irradiation. However, the melting temperature of phenol-containing antioxidant-added HDPE was increased with increasing the absorbed dose. And the melting temperature of phosphorus-containing antioxidant-added composite was decreased with increasing the absorbed dose.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

Improved Electrical and Optical Properties of ITO Films by Using Electron Beam Irradiated Sputter

  • Wie, Sung Min;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.407-408
    • /
    • 2013
  • Thin transparent conductive oxides (TCOs) having a thickness lower than 30 nm have been widely usedin touch screen panels. However the resistivity of the TCO films significantly increases as the thickness decreases, due to the poor crystallinity at very thin thickness of TCO films. In this study, we have investigated the effect of electron beam irradiation during the sputtering on the electrical properties and transmittance of 30 nm-thick ITO films, which have a different SnO2 atomic percent, prepared by magnetron sputtering at room temperature. Fig. 1 shows the variation of resistivity of ITO films with a different SnO2 atomic percent for both the normal ITO films and electron beam irradiated ITO films. As shows in Fig. 1, the electron beam irradiation to the ITO (SnO2 weight percent 10%) films during the sputtering resulted in a significantly decreased in resistivity from $7.4{\times}10^{-4}{\Omega}-cm$ to $1.5{\times}10^{-4}{\Omega}-cm$ and it also increased in transmittance from 84% to 88% at a wavelength of 550 nm. These results can be attributed to energy transfer from electron to ad-atoms of ITO films during the electron beam irradiated sputtering, which can enhance the crystallinity of 30 nm-thick ITO films. It is strongly indicate that electron beam irradiation can greatly improve the electrical properties and transmittance of very thin ITO films for touch screen panels, flexible displays and solar cells.

  • PDF

Effects of Combined Treatment of Aqueous Chlorine Dioxide and UV-C or Electron Beam Irradiation on Microbial Growth and Quality in Chicon during Storage (이산화염소수와 UV-C 또는 전자빔 병합처리가 치콘의 저장 중 미생물 성장과 품질에 미치는 영향)

  • Kang, Ji Hoon;Park, Jiyong;Oh, Deog Hwan;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.11
    • /
    • pp.1632-1638
    • /
    • 2012
  • The effects of combined treatment of aqueous $ClO_2$ and UV-C or electron beam irradiation on microbial growth and quality in chicon during storage at $4^{\circ}C$ were investigated. Samples were treated separately with 50 ppm of $ClO_2$, 5 kJ/$m^2$ of UV-C, 2, 5, 7, and 10 kGy of electron beam irradiation, as well as a combination of $ClO_2$ and UV-C or 2 kGy of electron beam irradiation. The populations of total aerobic bacteria as well as yeast and molds in the chicon samples were determined following each treatment. The populations of total aerobic bacteria in the chicon samples decreased by 1.49~2.92 log CFU/g following combined treatment of $ClO_2$ and UV-C irradiation compared to the control, whereas the populations of yeast and molds decreased by 1.63~1.78 log CFU/g. On the contrary, following combined treatment of $ClO_2$ and electron beam irradiation, the populations of total aerobic bacteria as well as yeast and molds in the chicon samples were undetectable during storage. Color measurements indicated that Hunter $L^*$, $a^*$, and $b^*$ values were not significantly different among the treatments during storage. These results suggest that combined treatment of $ClO_2$ and electron beam irradiation can be useful for improving microbiological safety in chicon during storage.

Effect of Electron-Beam Irradiation on the Characteristics of Green Tea (Camellia sinensis L.) (전자빔 조사가 녹차 품질 특성에 미치는 영향)

  • Park, Ji-Hee;Lee, Jung-Min;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.774-779
    • /
    • 2006
  • The commercial green tea leaves were packaged with polyethylene film and irradiated by electron beam at doses of 0, 5, 10, 20, and 30 kGy. After irradiation, green teas were prepared by soaking the leaves in water (1 g/100 mL) at $75^{\circ}C$ for 10 min, and the physicochemical characteristics of green tea were determined. Electron beam irradiation decreased total phenol contents (TPC), total flavanol contents (TFC), ascorbic acid contents (AAC). Irradiation at dose of 20 kGy decreased TPC, TFC, and AAC from 223.46, 32.50, and 6.03 mg/g to 202.88, 31.16, and 5.57 mg/g, respectively, compared with non irradiated control. Electron beam irradiation also decreased catechins, caffeine, and nitrite scavenging activity of green tea. However, the changes of overall color and radical scavenging activity of irradiated green tea were negligible.

The Effect of Electron Irradiation on the Surface Modification of Polycarbonate and Adhesion of Cr Thin Films (전자 빔 조사를 통한 폴리카보네이트 표면개질 및 Cr박막 접착력 증대 효과)

  • Jeong, C.W.;Sung, Y.J.;Lim, S.Y.;Shin, G.W.;Shin, C.H.;Kim, S.K.;Kim, J.H.;You, Y.Z.;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The enhancement of adhesion for Cr film on polycarbonate (PC) substrate with electron irradiation treatment was considered. The electron treatment changes the contact angle of the PC substrates. As increase the electron energy from 300 eV to 900 eV, the contact angle decreases from $90^{\circ}$ to $60^{\circ}C$. It is supposed that electron treatment changes the chemical property of PC substrate into hydrophilic one. The micro surface roughness was also affected by electron treatment. The PC substrates irradiated with intense electron beam of 900 eV show the rougher surface than those of other PC substrates. Cr thin films deposited on the PC substrate treated with electron irradiation at 900 eV show the higher adhesion than that of the Cr thin film deposited untreated bare PC substrates.

A Study on the Properties of TiN Films by Using Electron Beam Irradiation (전자-빔 조사를 이용한 TiN 박막의 물성변화에 관한 연구)

  • Shin, C.H.;Sung, Y.J.;Lim, S.Y.;Shin, G.W.;Jeong, C.W.;Kim,, S.K.;Kim, J.H.;You, Y.Z.;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • Titanium nitride (TiN) films were deposited on the polycarbonate substrate by using radio frequency (RF) magnetron sputtering without intentional substrate heating. After deposition, the films were bombarded with intense electron beam for 20 minutes. The intense electron irradiation impacts on the crystalline, hardness and surface roughness of the TiN films. The films irradiated with an electron beam of 300 eV show the small grains on the surface, while as deposited TiN films did not showany grains on the surface. Also the surface harness evaluated with micro indenter was increased up to 18 Gpa at electron energy of 900 eV after electron beam irradiation. In addition, surface root mean square (RMS) roughness of the films irradiated with intense electron beam affected strongly. The films irradiated by electron beam with 900 eV have the lowest roughness of 1.2 nm in this study.

Effects of Electron Beam Irradiation on Functional and Other Associated Properties of Pork Myofibrillar Salt-Soluble Proteins

  • Koh, Kwang-Hwan;Lee, Sam-Pin;Whang, Key
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.73-77
    • /
    • 2006
  • Ground pork was irradiated with an electron beam (e-beam) at a dose of 0, 1.5, 3, 5 and 10 kGy and the changes in various functional and other associated properties of salt-soluble proteins extracted from the pork were evaluated. Irradiation did not affect turbidity and the disulfide content of pork salt-soluble protein, but the content of sulfhydryls and the hydrophobocity of salt-soluble protein increased. This indicates that protein degradation occurred when the pork was e-beam irradiated and that the sulfhydryls and hydrophobic moieties buried inside the proteins were exposed to the outside environment. However, these degraded protein molecules did not form large protein aggregates through disulfide bridges. The emulsifying capacity of the pork increased with irradiation, which could be the result from increased hydrophobicity of pork salt-soluble protein. Water holding capacity of pork was not affected bye-beam irradiation.

Microbiological, Physicochemical, and Sensory Characteristics of Myungran Jeotgal Treated by Electron Beam Irradiation (전자선 조사 명란젓갈의 미생물학적, 이화학적 및 관능적 품질특성)

  • Jung, Samooel;Choe, Jun-Ho;Kim, Bin-Na;Yun, Hye-Jeong;Kim, Yun-Ji;Jo, Cheorun
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.198-203
    • /
    • 2009
  • We examined the effects of electron-beam irradiation(0.5, 1, 2, or 5 kGy) on microbiological, physicochemical, and sensory quality characteristics of Myungran Jeotgal, Korean fermented seafood, during subsequent storage at $4^{\circ}C$ for 2 weeks. Viable counts of total aerobic bacteria, yeasts and molds, and total coliforms fell, after irradiation, to below detection limits($10^1CFU/g$). The pH of irradiated Myungran Jeotgal was maintained during storage but that of the non-irradiated control decreased. Sensory quality was not affected by electron-beam irradiation, except that color scores in samples irradiated with 2 and 5 kGy were lower than that of the control. Lipid oxidation tended to rise with increased irradiation dose and longer storage periods. The results suggest that electron-beam irradiation can be used to extend the shelf-life of Myungran Jeotgal without apparent quality attribute deterioration. However, means of preventing lipid oxidation resulting from electron-beam irradiation need consideration if irradiation is to find further applications in the food industry.

Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation (전자빔 조사에 따른 잿빛곰팡이병원균 방제효과와 절화 장미의 수확 후 품질)

  • Kwon, Song;Choi, Gyung Ja;Kim, Ki Sun;Kwon, Hye Jin
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.507-516
    • /
    • 2014
  • The present study was conducted to determine the effect of electron beam irradiation on control of Botrytis cinerea and postharvest quality of cut roses. Electron beam doses of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, and 20 kGy were applied with a 10-MeV linear electron beam accelerator (EB Tech, Korea). Electron beams inhibited spore germination and mycelial growth of B. cinerea with increasing irradiation doses. Conidia of B. cinerea were more tolerant to irradiation than were mycelia: the effective irradiation doses for 50% inhibition ($ED_{50}$) of spore germination and mycelial growth were 2.02 kGy and 0.89 kGy, respectively. In addition, electron beam irradiation was more effective in reducing mycelial growth of B. cinerea at $10^{\circ}C$ than at $20^{\circ}C$. Analysis of in vivo antifungal activity revealed that elevated irradiation doses exhibited increased control efficacy for tomato gray mold. Flower longevity and fresh weight of cut roses decreased when the irradiation dose was increased. In addition, flower bud opening tended to be inhibited in a dose-dependent manner. Although 'Decoration', 'Il se Bronze', 'Queen Bee', and 'Revue' roses tolerated and maintained overall postharvest quality up to 0.4 kGy, 'Vivian' did not, demonstrating that the irradiation sensitivity of cut roses varies according to cultivar.