• Title/Summary/Keyword: Electron donating

Search Result 1,010, Processing Time 0.028 seconds

Solvolysis of Substituted Benzyl Bromides (치환 브롬화벤질류의 가용매분해반응)

  • soo-Dong Yoh;Hye-Ryung Kim;Sung-Hong Kim;Byung-Soo Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.581-587
    • /
    • 1988
  • The solvolysis of substituted benzyl bromides was studied in binary solvent mixtures of acetone-water and ethanol-water at $25^{\circ}C$ and $45^{\circ}C$. The rate constants increase with electron-donating substituents in benzene ring and increasing of water contents in both of solvent mixtures. The sensitivity parameter (m) of the solvolysis of substituted benzyl bromides to solvent ionizing power (Y) was decreased in going from the electron-donating group to electron-withdrawing one, whereas their nucleophilic sensitivity increased continuously in going to above same substituents. It was shown that electron-donating (electron-withdrawing) groups make the transition state looser (tighter). The above results were consisted with the account for the potential energy surface model and the quantum mechanical approach.

  • PDF

Antioxidant Activities of Citrus unshiu Extracts obtained from Different Solvents (추출용매에 따른 진피 추출물의 항산화 활성)

  • Lee, Sung-Gu;Oh, Sung-Cheon;Jang, Jae-Seon
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.458-464
    • /
    • 2015
  • In this study, the total polyphenol content, electron donating ability (EDA) and inhibitory activity of glutathione S-transferase (GST) of freeze-dried Citrus unshiu extracts were examined. The Citrus unshiu extracts was obtained from four solvents such as ethyl acetate, acetone, methyl chloride and methanol, to evaluate its functional properties. Total polyphenol contents were measured in the two different extracts, and the extracts were screened for their potential antioxidant activities using tests such as electron donating ability (EDA), glutathione S-transferase (GST). The total polyphenol contents of Citrus unshiu extracts were $928.48{\pm}1.19{\mu}g\;GAE/mL$ in ethyl acetate (EA), $886.03{\pm}0.44{\mu}g\;RE/mL$ in acetone (AC), $413.08{\pm}1.39{\mu}g\;GAE/mL$ in methylene chloride (MC), $12,648.60{\pm}0.56{\mu}g\;GAE/mL$ in methanol (MeOH), respectively. Also, the total polyphenol contents of EtOH Citrus unshiu extracts were $664.64{\pm}0.74{\mu}g\;GAE/mL$ in EA, $702.67{\pm}0.85{\mu}g\;RE/mL$ in AC, $429.64{\pm}0.61{\mu}g\;GAE/mL$ in MC, $16,108{\pm}0.73{\mu}g\;GAE/mL$ in MeOH, respectively. The total polyphenol contents were significantly difference (p<0.05) between the solvents. The electron donating ability of Citrus unshiu extracts were $62.80{\pm}0.36%$ in EA, $97.43{\pm}0.51%$ in AC, $52.20{\pm}0.30%$ in MC, $97.63{\pm}0.46%$ in MeOH, respectively. Also, the electron donating ability of EtOH Citrus unshiu extracts were $51.49{\pm}0.26%$ in EA, $63.17{\pm}0.31%$ in AC, $67.68{\pm}0.55%$ in MC, $96.18{\pm}0.41%$ in MA, respectively. The electron donating ability were significantly difference (p<0.05) between the solvents. The inhibitory activity of glutathione S-transferase in Citrus unshiu extracts were $76.22{\pm}0.65%$ in EA, $31.73{\pm}0.48%$ in MC, $97.48{\pm}0.56%$ in MeOH, respectively. Also, inhibitory activity of glutathione S-transferase in EtOH Citrus unshiu extracts were $75.54{\pm}0.55%$ in EA, $73.53{\pm}0.38%$ in MC, $48.70{\pm}0.46%$ in MeOH, respectively. The inhibitory activity of glutathione S-transferase were significantly difference (p<0.05) between the solvents. These results indicated that the Citrus unshiu extracts is a high-valued food ingredient and the extraction with methanol will be useful as a nutritional source with natural antioxidant activities. Considering high consumer demand beneficial health effects, Citrus unshiu extracts can be utilized to develop functional food health- promoting and natural antioxidant agents.

Isoindigo Based Small Molecules for High-Performance Solution-Processed Organic Photovoltaic Devices

  • Elsawy, W.;Lee, C.L.;Cho, S.;Oh, S.H.;Moon, S.H.;Elbarbary, A.;Lee, Jae-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.245.2-245.2
    • /
    • 2013
  • Solution processed organic photovoltaic devices have relatively less attention compared to polymer photovoltaic devices even though they have high possibility to be developed because they have both advantages of polymer and organic, such as solution processable, no synthetic batch dependence of photovoltaic performance, high purity and high charge carrier mobility as well as relatively high efficiency (~7%). In addition, solution processed organic photovoltaic devices have an advantage of easiness to study the relationship between the molecular structure and photovoltaic performance due to its simple structure. In this work, five isoindigo based low band gap donor-acceptor-donor (D-A-D) small molecules with different electron donating strength were synthesized for investigating the relationship between the molecular structure and photovoltaic performance, especially, investigating the effects of different electron donating effect of donor group in isoindigo backbone to photovoltaic device performance. The variation of electron donating strength of donor group strongly affected the optical, thermal, electrochemical and photovoltaic device performances of isoindigo organic materials. The highest power conversion efficiency of ~3.2% was realized in bulk heterojuction photovoltaic device consisted of the ID3T as donor and PC70BM as acceptor. This work demonstrates the great potential of isoindigo moieties as electron deficient units as well as guideline for synthesis of donor-acceptor-donor (D-A-D) small molecules for realizing highly efficient solution processed organic photovoltaic devices.

  • PDF

Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1939-1944
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 35.0 $^{\circ}C$. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorophosphates (2). The substrate 1 has one more identical substituent Y compared to substrate 2. The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of cross-interaction constant (CIC) from negative ${\rho}_{XY}$ = -1.31 (2) to positive ${\rho}_{XY}$ = +1.91 (1), indicating the change of reaction mechanism from a concerted $S_N2$ (2) to a stepwise mechanism with a rate-limiting leaving group departure from the intermediate (1). The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines ($XC_6H_4ND_2$) show secondary inverse, $k_H/k_D$ = 0.61-0.87. The DKIEs invariably increase as substituent X changes from electron-donating to electron-withdrawing, while invariably decrease as substituent Y changes from electron-donating to electron-withdrawing. A stepwise mechanism with a rate-limiting bond breaking involving a predominant backside attack is proposed on the basis of positive sign of ${\rho}_{XY}$ and secondary inverse DKIEs.

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3597-3601
    • /
    • 2013
  • The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.

Interfacial Layers for High Efficiency Polymer Solar Cells

  • Kim, Youn-Su;Choi, Ha-Na;Son, Seon-Kyoung;Kim, Ta-Hee;Kim, Bong-Soo;Kim, Kyung-Kon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.74-74
    • /
    • 2011
  • Polymer solar cells utilize bulk heterojunction (BHJ) type photo-active layer in which the electron donating polymer and electron accepting C60 derivatives are mixed together. In the BHJ system the electron donating polymer and electron accepting C60 derivatives are blended. The blended system causes charge recombination at the interface between the BHJ active layer and electrode. To reduce the charge recombination at the interface, it is needed to use an interlayer that can selectively transfer electrons or holes. We have developed solution processable wide band gap inorganic interfacial layers for polymer solar cells. The effect of interlayers on the performance of polymer solar cell was investigated for various types of conjugated polymers. We have found that inorganic interfacial layers enhanced the solar cell efficiency through the reduction of charge recombination at the interface between active layer and electrode. Furthermore, the stability of the polymer solar cell using the interlayer was significantly improved. The efficiency of 6.5% was obtained from the PTB7:PCBM70 based solar cells utilizing $TiO_2$nanoparticles as an interlayers.

  • PDF

Characteristic Effects of 4,5-Disubstituted Pyridazin-3-one Derivatives with Various Functional Groups: Ab initio Study

  • Yoon, Yong-Jin;Koo, In-Sun;Park, Jong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1363-1370
    • /
    • 2007
  • The geometrical structures of pyridazin-3-one derivatives (4,5-dihalopyridazin-3-one and 4-halo-5- alkoxypyridazin-3-one) with various functional and substituent groups were fully optimized using the ab initio Hartree-Fock (HF) and second order Moller-Plesset perturbation (MP2) methods. At the N2-, C4-, and C5- positions on the pyridazin-3-one rings, the structural and electronic features pertaining to the variations of the functional and substituent groups were analyzed, respectively. The trends in the variation of the bond lengths, atomic charges, and energetics (relative energy, binding energy) of the derivatives induced by changing the electron donating functional groups (X1 = OMe, OEt) to electron withdrawing groups (X1 = Cl, NO2) were examined. The variations of the bond lengths, atomic charges, and binding energies with the electron withdrawing strength of the substituent groups (Y = Me → F) were also investigated.

Density Functional Theory Study on D-π-A-type Organic Dyes Containing Different Electron-Donors for Dye-Sensitized Solar Cells

  • Song, Jing;Xu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3211-3217
    • /
    • 2013
  • Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been employed to investigate the molecular structures and absorption spectra of three D-${\pi}$-A-type organic dyes (C1-1, D5 and TH208) containing identical ${\pi}$-spacers and electron acceptors, but different aromatic amine electron-donating groups (tetrahydroquinoline, triphenylamine and phenothiazine). The coplanar geometries indicate that the strong conjugation is formed in the dyes. The electronic structures suggest that the intramolecular charge transfer from the donor to the acceptor occurs, and the electron-donating ability of tetrahydroquinoline is stronger than those of triphenylamine and phenothiazine. The computed orbital energy levels of these dyes confirm that the electrons could be injected from the excited dyes to the semiconductor conduction band and the oxidized dyes could be reduced effectively by electrolyte. The TD-DFT results show that the CAM-B3LYP/6-31+G(d, p) is suitable for calculating the absorption spectra. The first absorption band for these dyes is assigned to the HOMO${\rightarrow}$LUMO and HOMO-1${\rightarrow}$LUMO transitions.

Solvolysis of Substituted Phenacyl Tosylates (치환 페나실토실레이트류의 가용매 분해반응)

  • Park, Byeong Su;Kim, Seong Hong;Yeo, Su Dong
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.221-226
    • /
    • 1990
  • The solvolysis of substitued phenacyl tosylates was studied in binary solvent mixtures of methanol-acetonitrile and methanol-acetone at 55$^{\circ}C$. Except for m-nitrophenacyl tosylate, the rate constants were increased with both of electron-donating substituents and electron-withdrawing ones and its rate constants were the largest in the binary solvent mixtures of 90% MeOH-10% MeCN. The results show that the reactions were changed with dissociative $S_N2$ mechanism judging from the magnitude of 1/m values going from the electron-withdrawing group to the electron-donating one of the substrate. And above results were consisted with the account for the PES model and QM approach.

  • PDF

Screening of Antioxidative Activity of Hot-Water Extracts from Medicinal Plants (한약재 열수추출물의 항산화효과 검정)

  • Kang, Mi-Young;Nam, Seok-Hyun
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • Interrelation between the antioxidative activity of hot-water extracts of 130 medicinal plants and their cellular antimutagenic activity was investigated. Antioxidative activity was evaluated by assaying electron-donation to DPPH free radical and scavenging of hydroxyl radical $({\cdot}OH)$ generated through Fenton rection, respectively. All medicinal plants examined in this study exhibited markedly electron-donating ability and radical scavenging ability in each assay system. The results demonstrated the fact that Pilbal (Piper longum L.) is the strongest in electron-donating activity, on the other hand, that Seokgok (Dendrobium moniliforme L.) is the strongest in ${\cdot}OH$ scavenging activity. When evaluated their antioxidative activities, 24 medicinal plants including Jimo (Anemarrhena asphodeloides Bunge) were found to be the medicinal plants carrying strong antioxidative activity, which exhibited more than 50% activity compared to the control group in both electron-donating and free radical scavenging. The experiment was also performed to examine whether 11 medicinal plants having significant antimutagenicity damage DNA in the presence of $Cu^{2+}$, showing the fact that all samples tested, except Taeksa (Alisma canaliculatum All. Br.), Paekjain (Nitraria sibirica Pall) and Ohyak (Lindera strychifolia Sieb. et Zucc. Villar) are capable of inducing DNA strand break. We also found that Taeksa and Paekjain strongly block DNA strand break induced by chemical mutagen mitomycin C.

  • PDF