• Title/Summary/Keyword: Electron density ratio

Search Result 257, Processing Time 0.025 seconds

The Electron Temperature and Density Properties of Mixed Gases in ICP Lighting System : (Ne:Xe, Ne:Ar) (ICP 광원 시스템의 Ne:Xe 및 Ne:Ar 혼합가스의 전자온도 및 전자밀도 특성)

  • Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee;Choi, Gi-Seung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.156-160
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem and root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe and Ne:Ar mixed gas lamp improve firing voltage of Xe gas lamp. Purpose of this study is to understand ideal mixing-ratio of Ne:Xe and Ne:Ar gas by electron temperature and electron density for mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by single-Langmuir probe. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe and Ne:Ar.

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

A Study on the Characteristics of the Radio-Frequency Inductive Discharge Plasma (고주파 유도방전 플라즈마 특성에 관한 연구( I ))

  • 박성근;박상윤;박원주;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.63-66
    • /
    • 1996
  • Electron temperature and electron density were measured in a radio-frequency(rf) inductively coupled plasma using probe measurements. Measurements were made in an argon discharge for pressures from 10 to 100mTorr and input rf power from 100 to 800W. Spatial distribution Electron temperature and electron density were measured for discharge with same aspect ratio. Electron temperature and Electron density were found to depend on both pressure and power. Electron density was creased with increasing pressure, but peaked in a 70mTorr discharge. Radial distribution of the electron density was peaked in the plasma fringes. These results were compared to a simple model of inductively coupled plasmas.

  • PDF

Time-dependent Characteristics of Pulse Modulated rf Plasma (펄스모듈레이션 된 고주파 플라즈마의 시변특성)

  • Lee Sun-Hong;Park Chung-Hoo;Lee Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.566-571
    • /
    • 2004
  • Pulse modulation technique provide additional controling method for electron temperature and density in rf and microwave processing plasma. Transient characteristics of electron density and temperature have been measured in pulse modulated rf inductively coupled argon plasma using simple probe circuit. Electron temperature relaxation is clearly identified in the after glow stage. Controllability of average electron temperature and density depends on the modulation frequency and duty ratio. Numerical calculation of time-dependent electron density and temperature have been performed based on the global model. It has been shown that simple langmuir probe measurement method used for continuous plasma is also applicable to time-dependent measurement of pulse modulated plasma.

Analysis of Electron Transport Coefficients in Binary Mixtures of TEOS Gas with Kr, Xe, He and Ne Gases for Using in Plasma Assisted Thin-film Deposition

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.455-462
    • /
    • 2016
  • The electron transport coefficients in not only pure atoms and molecules but also in the binary gas mixtures are necessary, especially on understanding quantitatively plasma phenomena and ionized gases. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in binary mixtures of TEOS gas with buffer gases such as Kr, Xe, He, and Ne gases, therefore, was analyzed and calculated by a two-term approximation of the Boltzmann equation in the E/N range (ratio of the electric field E to the neutral number density N) of 0.1 - 1000 Td (1 Td = 10−17 V.cm2). These binary gas mixtures can be considered to use as the silicon sources in many industrial applications depending on mixture ratio and particular application of gas, especially on plasma assisted thin-film deposition.

The electrical and optical properties of Xe plasma in flat lamp (평판형 광원에서 제논(Xe) 플라즈마의 전기적 광학적 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Chio, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.60-64
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important, distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp, we tested the discharge from 100 Torr to 300 Torr pressure, the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Electrical and Optical Properties of Xe Plasma in Flat Lamp (평판형 광원에서 제논 플라즈마의 전기적 및 광학적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.71-74
    • /
    • 2006
  • Discharge of the flat lamp lighting source research arc requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important. distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp. we tested the discharge from 100 Torr to 300 Torr pressure. the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Electrical and Optical properties of Xe gas in flat lighting source (제논(Xe) 가스를 사용한 평판형 광원에서의 전기 및 광학적 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2190-2192
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important. distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp. we tested the discharge from 100 Torr to 300 Torr pressure. the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Xe Plasma property with flat lamp by Langmuir probe (정전탐침법을 사용한 평판형 광원의 제논(Xe)플라즈마 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Yang-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.572-573
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness. life time. efficiency of flat lamp and plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important. When a distance of discharge electrode is 5.5mm and width is 16.5mm. we measured electron temperature and electron density measured with single Langmuir probe in flat lamp. We tested the discharge from 100 Torr to 300 Torr pressure. The pulse type was rectangular with frequency 20kHz and duty ratio was 20%. In result. electron temperature decreases and electron density increased as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio) (N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포)

  • Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.